TPM133

Контроллер приточной вентиляции

109456, Москва, 1-й Вешняковский пр., д.2 тел.: (495) 174-82-82, 171-09-21

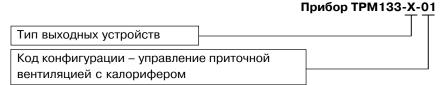
> P.№ 263 Зак. № 595

паспорт и руководство по эксплуатации

СОДЕРЖАНИЕ

Введение	3
1. Назначение	4
2. Технические характеристики и условия эксплуатации	5
3. Описание работы прибора	7
3.1. Конструкция прибора	7
3.2. Структурная схема	ç
3.3. Измерительные входы	ç
3.4. Дополнительные входы	12
3.5. Цифровой фильтр	13
3.6. Коррекция измерений	14
3.7. ПИД-регуляторы	16
3.8. Выходные элементы	17
3.9. Управление трех позиционным ИМ	17
3.9. Интерфейс связи	18
4. Функциональная схема	20
4.1. Функциональная схема работы прибора	20
4.2. Блок-схема работы прибора	21
4.3. Режимы работы прибора в системе вентиляции	21
5. Подготовка прибора к работе	27
5.1. Монтаж прибора на объекте и подключение	27
5.2. Программирование прибора	
5.2.1. Общие сведения	
5.2.2. Настройка измерительных входов	
5.2.3. Настройка дополнительных входов	
5.2.4. Автонастройка ПИД-регуляторов	
5.2.5. Задание уставок температур	37
5.2.6. Задание графика температуры обратной воды	
и приточного воздуха	
5.2.7. Настройка обмена данными	
5.2.8. Установка даты и времени	
5.2.9. Запуск системы вентиляции (активизирование)	41
6. Эксплуатация прибора	
6.1. Включение прибора	
6.2. Меню «Быстрый доступ»	43

6.3. Диагностика состояния входов и аварийные ситуации	43
6.4. Дежурный режим работы	45
6.5. Режим ручного управления	45
6.6. Принудительная перезагрузка прибора	46
7. Меры безопасности	47
8. Техническое обслуживание	47
9. Маркировка и упаковка	48
10. Транспортировка и хранение	48
11. Комплектность	48
12. Гарантийные обязательства	49
ПРИЛОЖЕНИЯ	
А. Габаритный чертеж	50
Б. Программируемые параметры	51
В. Общая схема подключения прибора	56
Г. Подключение термопреобразователей сопротивления	
по двухпроводной схеме	
Д. Юстировка датчика положения задвижки	
Е. ПИД-регулятор и параметры его настройки	
Ж. Список подключаемых датчиков	63
3. Настройка прибора для управления ИМ с аналоговым	
управлением	64
Лист регистрации изменений	65
Свидетельство о приемке	


ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, порядком эксплуатации и обслуживания контроллеров систем приточной вентиляции TPM133 (в дальнейшем по тексту именуемого «прибор»).

Руководство по эксплуатации распространяется на прибор TPM 133, выпущенный по **ТУ 4211–013–46526536–2004**.

Прибор ТРМ133 изготавливается в нескольких вариантах модификаций, отличающихся друг от друга типом встроенных выходных устройств, различными конфигурациями.

Информация о варианте модификации расшифровывается следующим образом:

Тип выходных устройств:

- **И** цифроаналоговый преобразователь «параметр-ток 4...20 мА»;
- У цифроаналоговый преобразователь «параметр-напряжение 0...10 В».

Пример записи условного обозначения прибора при заказе и в документации другой продукции, где они могут быть применены:

Прибор ТРМ133-И-04 ТУ 4211-013-46526536-2004

Это означает, что изготовлению и поставке подлежит контроллер систем приточной вентиляции ТРМ133, оснащённый выходными устройствами – двумя цифроаналоговыми преобразователями «параметр-ток 4...20 мА».

В настоящем документе приняты нижеприведенные обозначения и сокращения:

- **НСХ** номинальная статическая характеристика;
- **ВЭ** выходной элемент;
- **ИУ** измерительное устройство;
- **ИМ** исполнительный механизм;
- **ТП** термопара (преобразователь термоэлектрический);
- **тс** термопреобразователь сопротивления;
- **ТСМ** термопреобразователь сопротивления медный;
- **ТСП** термопреобразователь сопротивления платиновый;
- **ЦАП** цифроаналоговый преобразователь;
- **ЖКИ** жидкокристаллический индикатор;
- **ПВС** преобразователь выходного сигнала регулятора;
- **КЗР** запорно-регулирующий клапан (задвижка).

1. НАЗНАЧЕНИЕ

- 1.1. Контроллер систем приточной вентиляции TPM133 в комплекте с первичными преобразователями и исполнительными механизмами предназначен для контроля и регулирования температуры воздуха в помещениях, оборудованных системой приточновытяжной вентиляции, отображения измеренной температуры и режимов работы на встроенном индикаторе и формирования сигналов управления встроенными выходными устройствами, управляющими исполнительными механизмами.
 - 1.2. Во время работы прибор выполняет следующие основные функции:
 - производит измерение физических параметров, контролируемых входными первичными преобразователями с учетом нелинейности их НСХ;
 - осуществляет цифровую фильтрацию измеренных параметров от промышленных импульсных помех;
 - позволяет производить коррекцию измеренных параметров для устранения погрешностей первичных преобразователей;
 - осуществляет отображение результатов измерений на встроенном жидкокристаллическом индикаторе (ЖКИ);
 - формирует аварийный сигнал при обнаружении неисправности первичных преобразователей с отображением его причины на ЖКИ и выводит его на внешнюю сигнализацию;
 - формирует сигналы управления внешними исполнительными механизмами и устройствами в соответствии с заданными пользователем законами и параметрами регулирования;
 - осуществляет отображение на встроенном жидкокристаллическом цифровом индикаторе заданных параметров регулирования;
 - формирует команды ручного управления исполнительными механизмами и устройствами с клавиатуры прибора;
 - осуществляет передачу компьютеру информации о значениях контролируемых датчиками величин и установленных рабочих параметрах, а также принимает от него данные на изменение этих параметров;
 - производит сохранение заданных программируемых параметров в энергонезависимой памяти при отключении напряжения питания;
 - позволяет производить конфигурирование функциональной схемы и установку программируемых рабочих параметров с помощью встроенной клавиатуры управления, а также специализированной программы на ПК.
 - 1.3. Условия эксплуатации:
 - закрытые взрывобезопасные помещения без агрессивных паров и газов;
 - температура окружающего воздуха

от +1 до +50 °C;

 верхний предел относительной влажности 80 % при 25 °C и более низких температурах воздуха

без конденсации влаги;

- атмосферное давление

от 85 до 107 кПа.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ

2.1. Основные технические характеристики приведены в таблицах 2.1, 2.2, 2.3.

Таблица 2.1

Общие характеристики

Наименование	Значение
Диапазон переменного напряжения питания	90245 В переменного тока
	частотой 4763 Гц
Потребляемая мощность	не более 5 ВА
Количество каналов измерения	7
Количество дискретных входов	6
Время опроса одного канала, не более	0,5 c
Количество выходных устройств	4 реле
	2 ЦАП
Интерфейс связи с компьютером	RS-485
Тип корпуса	DIN12M
Габаритные размеры прибора	157×86×58 мм
Степень защиты корпуса	IP20
(со стороны лицевой панели)	
Масса прибора	не более 0,5 кг
Средний срок службы	8 лет

Таблица 2.2

Входные первичные преобразователи

Наименование	Диапазон	Разрешающая	Предел основной
и НСХ	измерений	способность	приведенной
			погрешности
Термопреобразоват	гели сопротивле	ния по ГОСТ Р	6651-94¹
TCM 50M W ₁₀₀ = 1,426	−50 °C+200 °C	0,1 °C	
TCM 50M $W_{100} = 1,428$	−190 °C+200 °C	0,1 °C	
ТСП 50П W ₁₀₀ = 1,385	−200 °C+750 °C	0,1 °C	
ТСП 50П W ₁₀₀ = 1,391	−200 °C+750 °C	0,1 °C	
TCM 100M W ₁₀₀ = 1,426	−50 °C+200 °C	0,1 °C	
TCM 100M W ₁₀₀ = 1,428	−190 °C+200 °C	0,1 °C	0,25 %
ТСП 100П W ₁₀₀ = 1,385	−200 °C+750 °C	0,1 °C	
ТСП 100П W ₁₀₀ = 1,391	−200 °C+750 °C	0,1 °C	
TCH 100H W ₁₀₀ = 1,617	−60 °C+180 °C	0,1 °C	
ТСП 500П W ₁₀₀ = 1,385	−200 °C+650 °C	0,1 °C	
ТСП 500П W ₁₀₀ = 1,391	−200 °C+650 °C	0,1 °C	0,25 %

Продолжение табл. 2.2

TCH 500H W ₁₀₀ = 1,617	−60 °C…+180 °C	0,1 °C	
TCM $1000\Pi W_{100} = 1,385$	−200 °C+650 °C	0,1 °C	
TCM $1000\Pi W_{100} = 1,391$	−200 °C+650 °C	0,1 °C	
TCM 1000H W ₁₀₀ = 1,617	−60 °C+180 °C	0,1 °C	
Термоі	пары по ГОСТ Р 8	3.585-2001 ²	
TXK (L)	-200 °C+800 °C	0,1 °C	0.05.0/
TXA (K)	−200°C+1300 °C	1 °C	0,25 %
Сигналы постоянн	ого тока и напря	жения по ГОСТ	26.011
05 мА	0100 %	0,1 %	
020 мА	0100 %	0,1 %	0,25 %
420 мА	0100 %	0,1 %	0,25 %
01 B	0100 %	0,1 %	
Датчик положения задвижек			
– резистивный (до 900 Ом)	0100 %	1 %	
– резистивный (до 2 кOм)			
– токовый 0(4)20 мА	0100 %	1 %	0,25 %
– токовый 05 мА	0100 %	1 %	
 Примечания. 1. W₁₀₀ – отношение сопротивления датчика, измеренного при температуре 100 °C к его сопротивлению, измеренному при 0 °C. 2. Для работы с прибором могут быть использованы только изолированные термопары с незаземленными рабочими спаями. 3. Более подробную информацию см. в прил. Ж (Международные обозначения). 			

Таблица 2.3

Выходные элементы

Наименование	Допустимая нагрузка
Реле электромагнитные	4 А при напряжении не более
	220 В 50Гц и соѕ φ > 0,4
ЦАП «параметр-ток» 4 20 мА	100 800 Ом
ЦАП «параметр-напряжение» 0 10 В	более 5 кОм

- 2.2. По устойчивости к климатическим воздействиям при эксплуатации ТРМ133 соответствует группе исполнения В4 по ГОСТ 12997-84.
- 2.3. По устойчивости к механическим воздействиям при эксплуатации ТРМ133 соответствует группе исполнения N1 по ГОСТ 12997-84.
 - 2.4. Габаритные и установочные размеры прибора TPM133 приведены в *прил.А*.

3. ОПИСАНИЕ РАБОТЫ ПРИБОРА

3.1. Конструкция прибора

3.1.1.Прибор TPM133 изготавливается в пластмассовом корпусе, предназначенном для крепления на DIN-рейку. Габаритный чертёж прибора приведён в *прил.* А.

По обеим сторонам корпуса в нижней его части располагаются две клеммные колодки, предназначенные для подсоединения цепей питания, цепей управления исполнительными механизмами, измерительных и контактных датчиков, кабеля связи по интерфейсу RS-485, на верхней боковой части корпуса располагается короткая клеммная колодка, предназначенная для подключения кабеля связи по интерфейсу RS-232 и модуля расширения OBEH MP1.

3.1.2. На верхней панели прибора находятся: ЖКИ и кнопки для управления работой прибора (рис. 3.1).

Рис. 3.1. Элементы индикации и управления

Двухстрочный 16-разрядный (2×16) жидкокристаллический индикатор предназначен для отображения цифровой и буквенной (знаки русского и латинского алфавитов) информации.

На индикаторе отображаются:

- наименования режимов работы;
- значения измеренных величин;
- состояние дискретных входов (сигналы об аварийных ситуациях);
- значения уставок;
- текущее время;
- пункты меню;
- обозначения и значения программируемых параметров.

Индикатор имеет подсветку лицевой панели, управляемую с помощью программируемого параметра ind.L, контрастность изображения, регулируемую с помощью программируемого параметра ind.C (имеется 200 градаций).

В прибор встроена пленочная клавиатура с шестью кнопками. При нажатии кнопок звучит сигнал (подтверждение), который можно выключить с помощью программируемого параметра веер.

Кнопки, находящиеся на передней панели прибора, имеют следующее назначение.

Кнопки	Функциональное назначение		
⊗	Рабочий режим ¹	Выбор: – пункта меню – канала регулирования – дискретного входа	
	Режим программирования ²	Выбор программируемых параметров и изменение их значений	
ввод	Рабочий режим	Вход в главное меню и последующий переход в нужный режим программирования	
	Режим программирования	Переход в режим редактирования параметров	
		Запись в память установленных значений параметров	
		Продолжительное нажатие (~3 с) изменяет положение десятичной точки числа	
выход	Рабочий режим	Выход из различных пунктов меню в режим основной индикации	
		Возврат в предыдущий пункт меню Сброс аварийной сигнализации	
	Режим программирования СТР	Продолжительное нажатие (~3 с) осуществляет выход из режима программирования в главное меню	
АЛЬТ. + ※	Ручной режим, режим тестирования	При одновременном нажатии кнопок меняется значение параметра в определенных режимах	
	Режим программирования	Изменение даты и времени	
(IVCK CTOT)	Рабочий режим	Продолжительное нажатие (~3 с) переводит прибор в дежурный режим и обратно (изменяется значение параметра duty на противоположное)	

Рабочий режим индикации – режим индикации, в котором отображаются оперативные значения измеренных величин, состояние оборудования, режим работы и время.

3.2. Структурная схема

Структурная схема прибора представлена на рис. 3.2.

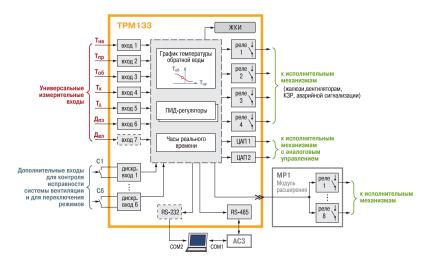
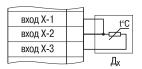


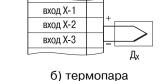
Рис. 3.2. Структурная схема прибора

3.3. Измерительные входы

3.3.1. К универсальным измерительным входам (Вход 1...Вход 7) (см. рис. 3.2) подключаются первичные преобразователи.

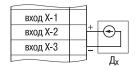

Первичные преобразователи (датчики) преобразовывают физические параметры объекта в электрические величины, поступающие в прибор для их дальнейшей обработки.

В качестве входных датчиков прибора могут быть использованы:


- термопреобразователи сопротивления;
- термопары (преобразователи термоэлектрические);
- активные преобразователи с выходным аналоговым сигналом в виде постоянного напряжения или тока;
- датчики положения исполнительных механизмов (перечень датчиков см. в табл. 2.2).
- 3.3.2. Термопреобразователи сопротивления (TC) применяются для измерения температуры окружающей среды в месте установки датчика. Принцип действия таких датчиков основан на существовании у ряда металлов воспроизводимой и стабильной зависимости активного сопротивления от температуры. В качестве материала для изготовления TC в промышленности чаще всего используется специально обработанная медная (для датчиков TCM) или платиновая (для датчиков TCM) проволока.

Выходные параметры ТС определяются их номинальными статическими характеристиками (HCX), стандартизованными ГОСТ Р 50353-92. Основными параметрами НСХ являются: начальное сопротивление датчика R_0 , измеренное при температуре 0°C, температурный коэффициент сопротивления W_{100} , определяемый

Режим программирование – режим, предназначенный для установки значений параметров работы прибора, необходимых при эксплуатации, записи их в энергонезависимую память прибора, а также просмотра значений параметров (см. рис. 5.2).



а) термопреобразователь сопротивления TCM/TCП

Вход X-1 Вход X-2 Вход X-3

в) датчик с унифицированным выходным сигналом тока

г) датчик с унифицированным выходным сигналом напряжения

Рис. 3.3. Схемы подключения датчиков

как отношение сопротивления датчика, измеренного при температуре 100 °C, к его сопротивлению, измеренному при 0 °C. В связи стем, что НСХ термопреобразователей сопротивления – функции нелинейные (для ТСМ в области отрицательных температур, а для ТСП во всем температурном диапазоне), в приборе предусмотрена линеаризация результатов измерений.

Во избежание влияния сопротивления соединительных проводов на результаты измерения температуры, подключение датчика к прибору следует производить по трехпроводной схеме. При такой схеме к одному из выводов ТС подключаются одновременно два провода, соединяющих его с прибором, а к другому выводу – третий соединительный провод. Для полной компенсации влияния соединительных проводов на результаты измерений необходимо, чтобы их сопротивления были равны друг другу. Пример схемы подключения ТС к входу 1 прибора представлен на рис. 3.3, а.

Схемы подключения к прибору различных датчиков приведены на рис. 3.3, и в *прил.* Б. В некоторых случаях возникает необходимость подключения ТС не по трехпроводной, а по двухпроводной схеме, например, с целью использования уже имеющихся на объекте линий связи. Последовательность действий при реализации двухпроводной схемы представлена в *прил.* В.

3.3.3. Термоэлектрические преобразователи (термопары) ТП также применяются для измерения температуры. Принцип действия термопар основан на эффекте Зеебека, в соответствии с которым нагревание точки соединения двух разнородных проводников вызывает на противоположных концах этой цепи возникновение электродвижущей силы – термоЭДС. Величина термоЭДС изначально определяется химическим составом проводников и зависит от температуры нагрева.

НСХ термопар различных типов стандартизованы ГОСТ Р 8.585-2001. Так как характеристики всех термопар в той или иной степени являются нелинейными функциями, в приборе предусмотрены средства для линеаризации показаний.

Точка соединения разнородных проводников называется рабочим спаем термопары, а их концы – свободными концами или иногда холодным спаем. Рабочий спай термопары располагается в месте, выбранном для контроля температуры, а свободные концы подключаются к измерительному прибору. Если подключение свободных концов непосредственно к контактам ТРМ133 не представляется возможным (например, из-за их удаленности друг от друга), то соединение термопары с прибором необходимо выполнять при помощи компенсационных термоэлектродных проводов или кабелей, с обязательным соблюдением полярности их включения. Необходимость применения таких проводов обусловлена тем, что ЭДС термопары зависит не только от температуры рабочего спая, но также и от температуры ее свободных концов, величину

которой контролирует встроенный в прибор датчик (рис. 3.4). При этом использование термоэлектродных кабелей позволяет увеличить длину проводников термопары и «перенести» ее свободные концык клеммнику ТРМ133.

Пример схемы подключения ТПк Входу X прибора представлен на рис. 3.4.

ВНИМАНИЕ! Для работы с прибором могут быть использованы только термопары с изолированными и незаземленными рабочими спаями, так как отрицательные

рабочий спай 1 2 3 датчик температуры свободных концов

Рис. 3.4. Схема подключения ТП

выводы их свободных концов объединены между собой на входе ТРМ133.

3.3.4. Активные преобразователи с выходным аналоговым сигналом применяются в соответствии с назначением датчика для измерения различных физических параметров. Выходными сигналами таких датчиков могут быть изменяющееся по линейному закону напряжение постоянного тока и величина самого тока.

Питание активных токовых датчиков должно осуществляться от внешнего блока питания 24 ± 3 В.

Подключение датчиков с выходным сигналом в виде постоянного напряжения (-50,0...+50,0 мВ или 0...1,0 В) может осуществляться непосредственно к входам

прибора, а датчиков с выходным сигналом в виде тока – только после установки шунтирующего резистора сопротивлением 100 Ом (погрешность не более 0,1%). В качестве шунта рекомендуется использовать высокостабильные резисторы с минимальным значением температурного коэффициента сопротивления, например C2-29B.

Пример схемы подключения активного датчика с токовым выходом к Входу X прибора представлен на рис. 3.5.

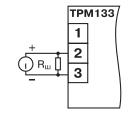


Рис. 3.5. Схема подключения датчика с токовым выходом

ВНИМАНИЕ! При использовании активных датчиков следует иметь в виду, что «минусовые» выводы их выходных сигналов в ТРМ133 объединены между собой.

Ток в цепи встроенного источника напряжения 24 В не должен превышать 180 мА.

3.3.5. Датчики положения предназначены для определения текущего положения (степени открытия или закрытия) запорно-регулирующих клапанов, задвижек и т.п. при регулировании технологических параметров системы приточной вентиляции.

Наиболее часто применяются датчики положения резистивного типа. В датчиках этого типа в качестве чувствительного элемента используется резистор переменного сопротивления, движок которого механически связан с регулирующей частью исполнительного механизма.

Пример схемы подключения резистивного датчика к Входу 6 прибора представлен на рис. 3.6.

Находят применение и датчики, формирующие выходной сигнал в виде линейно-изменяющегося тока, величина которого зависит от положения исполнительного механизма в данный момент. Прибор способен обрабатывать сигналы датчиков с токовым выходом 0...5 мA, 0...20

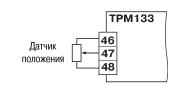


Рис. 3.6. Схема подключения резистивного датчика положения

мА и 4...20 мА. Подключение датчиков этого типа к ТРМ133 аналогично подключению активных преобразователей с токовым выходом (см. п. 3.3.4).

ВНИМАНИЕ! При использовании датчиков положения любого типа должна быть проведена совместная юстировка системы «датчик – прибор». Порядок юстировки приведен в *прил.* Г.

3.3.6. Прибор может быть использован одновременно для работы с различными типами датчиков – термопреобразователями сопротивления, термопарами и т.п. При этом несущественно, к какому из входов прибора будет подключен датчик того или иного типа, так как все входы прибора идентичны (кроме Входа 7*). После подключения датчикам присваиваются порядковые номера тех входов прибора, с которыми они соединены (Входу 1 соответствует датчик № 1, Входу 2 – датчик № 2 и т.д.).

При отсутствии подключенного ко входу датчика необходимо установить значение «Датчик не подключен» в программируемом параметре in-t, определяющем его тип (см. прил. Д).

3.4. Дополнительные входы

Для контроля состояния внешнего оборудования и диагностики работоспособности системы предусмотрены шесть дискретных входов (С1...С6) (см. рис. 3.2), предназначенных для подключения контактных датчиков:

- С1 коммутирующее устройство для дистанционного перевода системы в дежурный режим;
- С2 датчик контроля неисправности приточного вентилятора по потоку воздуха;
- * Вход 7 имеет встроенный шунтирующий резистор $R_{\text{ш}}$ = 100 Ом (0,1 %).

- С3 датчика контроля засорения фильтра приточного (вытяжного) вентилятора;
- С4 датчик включения режима защиты калорифера от замерзания;
- С5 датчик пожарной сигнализации;
- С6 датчик контроля неисправности вытяжного вентилятора.

Эти сигналы формируются в результате замыкания (размыкания) внешних контактов, что устанавливается пользователем при настройке прибора на объекте W. Требуемая задержка реакции прибора при получении таких сигналов устанавливается пользователем индивидуально для каждого входа, см. параметры PAU.0 и PAU.1, прил. Б.

3.5. Цифровой фильтр

- 3.5.1. Для ослабления влияния внешних импульсных помех на эксплуатационные характеристики прибора в программу его работы введена цифровая фильтрация результатов измерений. Фильтрация осуществляется независимо для каждого канала измерения входных параметров и проводится в два этапа.
- 3.5.2. На первом этапе фильтрации из текущих измерений входных параметров отфильтровываются значения, имеющие явно выраженные «провалы» или «выбросы». Для этого в приборе осуществляется непрерывное вычисление разности между результатами двух последних измерений одного и того же входного параметра, выполненных в соседних циклах опроса, и сравнение ее с заданным предельным отклонением. Если вычисленная разность превышает заданный предел, то результат, полученный в последнем цикле опроса, считается недостоверным, дальнейшая обработка его приостанавливается и производится повторное измерение. Если недостоверный результат был вызван воздействием помехи, то повторное измерение подтвердит этот факт и ложное значение аннулируется. Такой алгоритм обработки результатов измерений позволяет защитить прибор от воздействия единичных импульсных и коммутационных помех, возникающих на производстве при работе силового оборудования.

Величина предельного отклонения результатов двух соседних измерений задается пользователем в параметре «Полоса фильтра» in.FG индивидуально для каждого датчика в единицах измеряемых ими физических величин.

В общем случае при выборе «Полосы фильтра» следует иметь в виду, что чем меньше ее заданное значение, тем лучше помехозащищенность измерительного канала, но при этом (из-за возможных повторных измерений) хуже реакция прибора на быстрое фактическое изменение входного параметра. Во избежание повторных измерений при задании «Полосы фильтра» для конкретного датчика следует руководствоваться максимальной скоростью изменения контролируемого им параметра при эксплуатации, а также установленной для него периодичностью опроса.

При необходимости данный фильтр может быть отключен установкой в параметре in.FG значения 0.

3.5.3. На втором этапе фильтрации осуществляется сглаживание (демпфирование) полученных в п. 3.5.2 результатов измерений в случае их возможной остаточной флуктуации.

က က Передаточная функция звена, осуществляющего преобразование входного сигнала на этом этапе фильтрации, по своим параметрам соответствует фильтру низких частот первого порядка с постоянной времени t. При поступлении на вход такого фильтра скачкообразного сигнала его выходной сигнал через время, равное t, изменится на величину 0,64 от амплитуды скачка; через время, равное 2t, — на величину 0,88; через время, равное 3t, — на величину 0,95 и т.д. по экспоненциальному закону.

«Постоянная времени фильтра» задается пользователем в секундах индивидуально для каждого канала при установке параметра in.FD.

При задании параметра in.FD следует иметь в виду, что увеличение его значения улучшает помехозащищенность канала измерения, но одновременно увеличивает его инерционность. Реакция прибора на быстрые изменения входной величины замедляется.

При необходимости данный фильтр может быть отключен установкой в параметре in.FD значения 0.

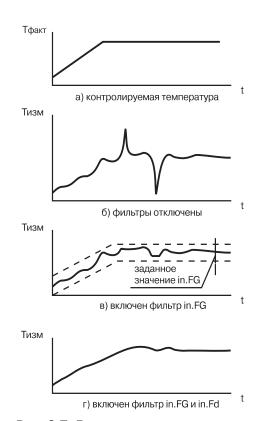


Рис. 3.7. Временные диаграммы работы цифровых фильтров показаний датчика

Временные диаграммы работы цифровых фильтров представлены на рис. 3.7.

3.6. Коррекция измерений

3.6.1. Для устранения начальной погрешности преобразования входных сигналов и погрешностей, вносимых соединительными проводами, измеренное прибором значение может быть откорректировано в соответствии с заданными пользователем корректирующими параметрами.

В приборе для каждого канала измерения предусмотрены два корректирующих параметра, с помощью которых можно осуществлять сдвиг и изменение наклона измерительной характеристики датчика. Коррекция показаний осуществляется независимо для каждого канала контроля температуры.

Откорректированные значения контролируемых прибором температур выводятся на индикатор прибора и используются для регулирования параметров системы.

3.6.2. Коррекция "Сдвиг характеристики" служит для устранения влияния начальной погрешности первичного преобразователя (например, значения R_0 у термопреобразователей сопротивления) и осуществляется путем алгебраического суммирования вычисленных прибором значений с корректирующим значением для данного датчика. Корректирующее значение задается пользователем в параметре $I_{\rm T}$, SH, в тех же единицах измерения, что и

in.SH в тех же единицах измерения, что и измеряемый физический параметр.

Примечание. При работе с платиновыми термопреобразователями сопротивления на значение сдвига накладывается также коррекция нелинейности НСХ датчика, заложенная в программе обработки измерений.

Пример сдвига измерительной характеристики графически представлен на рис. 3.8.

3.6.3. Коррекция "Наклон характеристики" используется для компенсации погрешностей самих датчиков (например, при отклонении у термопреобразователей сопротивления параметра W_{100} от стандартного

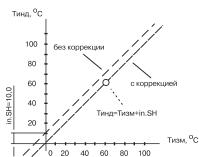


Рис. 3.8. Коррекция "сдвиг характеристики"

значения) или погрешностей, связанных с разбросом сопротивлений шунтирующих резисторов (при работе с преобразователями, выходным игналом которых является ток)и осуществляется путем умножения откорректированной по п. 3.6.2 измеренной величины на поправочный коэффициент α , значение которого задается пользователем в параметре <code>in.SL</code> для каждого датчика в безразмерных единицах в диапазоне 0.900...1,100; перед установкой может быть определено по формуле

$$\alpha = \Pi_{\phi a \kappa \tau} / \Pi_{_{M3M}}$$
,

где α – значение поправочного коэффициента;

П_{факт} – фактическое значение контролируемого входного параметра;

П – измеренное прибором значение параметра.

Пример изменения наклона измерительной характеристики графически представлен на рис. 3.9.

Определить необходимость введения поправочного коэффициента можно, измерив максимальное или близкое к нему значение параметра, где отклонение наклона измерительной характеристики наиболее заметно.

ВНИМАНИЕ! Задание корректирующих значений, отличающихся от заводских установок (in.SH=000.0и in.SL=1.000), изменяет стандартные метрологические характеристики прибора и должно производиться только в технически обоснованных случаях квалифицированными специалистами.

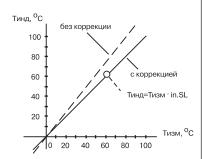


Рис. 3.9. Коррекция "наклон характеристики"

Полученная после фильтрации и коррекции результирующая информация об измеренных значениях входных параметров поступает для дальнейшей обработки на вычислители прибора.

3.7. Регуляторы

FPM133

Регулятор – это программный модуль, отвечающий за поддержание входной величины на заданном уровне, называемом уставкой.

Регулятор сравнивает значение, пришедшее со входа, с уставкой и вырабатывает выходной сигнал, направленный на уменьшение их рассогласования. Выходной сигнал регулятора в ТРМ133 поступает на выходной элемент, с помощью которого осуществляется управление Исполнительным механизмом.

Для каждого Регулятора задаются следующие параметры:

- режим работы (ПИД или двухпозиционный регулятор);
- зона нечувствительности;
- для ПИД-регулятора параметры ПИД-регулирования и автонастройки;
- для двухпозиционного регулятора гистерезис и времена задержек.

3.7.1. Режимы работы регулятора

В ТРМ133-01 регулятор работает в режиме ПИД-регулирования.

Режим работы регулятора задается параметром rEG.t.

3.7.1.1. ПИД-регулирование

ПИД-регулятор (пропорционально-интегрально-дифференциальный регулятор) выдает аналоговое значение выходной мощности, направленное на уменьшение отклонения текущего значения регулируемой величины от уставки.

При управлении ИМ типа «нагреватель» значение выходной мощности находится в диапазоне от «0» до «1» (или от 0 до 100 %).

При работе с ВЭ типа ЦАП выходная мощность преобразуется в пропорциональный ей ток или напряжение.

При работе с ВЭ дискретного типа выходная мощность ПИД-регулятора преобразуется в сигналы «больше», «меньше», «стоп» для управления трех позиционным ИМ (см. п. 3.9).

ПИД-регулирование является наиболее точным методом поддержа-ния контролируемой величины. Однако для эффективной работы ПИД-регулятора необходимо определить и задать для конкретного объекта регулирования ряд коэффициентов.

Задача определения коэффициентов ПИД-регулятора довольно сложна, и, как правило, выполняется опытным специалистом, но в ТРМ133 она может быть выполнена в автоматическом режиме.

Принцип работы и параметры ПИД-регулятора приведены в прил. Д.

3.7.2. Зона нечувствительности

Зона нечувствительности задается для исключения ненужных срабатываний регулятора при небольшом отклонении температуры от уставки. Прибор будет выдавать управляющий сигнал только после того, как температура выйдет из этой зоны.

Значение зоны нечувствительности задается параметром **db** в единицах регулируемой величины.

3.7.3. Ограничение диапазона и скорости изменения выходной мощности регулятора (только для ПИД-регулятора)

Значения выходной мощности ПИД-регулятора находятся в диапазоне от «0» до «1» (или от 0 до 100 %). В некоторых случаях возникает необходимость ограничения выходной мощности сверху или снизу.

Ограничение диапазона выходной мощности регулятора задается двумя параметрами: максимальное значение P.UPr и минимальное P.min. Эти параметры задаются в процентах от максимальной мощности, которую можно подать на исполнительный механизм. Если регулятор выдает значение мощности, находящееся за пределами заданного диапазона, то оно принимается равным P.UPr или P.min соответственно.

Ограничение скорости роста выходной мощности регулятора необходимо для безударного включения исполнительного механизма. Максимальная скорость изменения выходной мощности задается параметром P.res в %/мин.

3.8. Выходные элементы

ТРМ133 имеет несколько выходных элементов, однако выходной сигнал (выходная мощность) от регулятора не сразу подается на них, а проходит через ряд программных блоков, осуществляющих его преобразование. Эти операции необходимы для управления сложными исполнительными механизмами (ИМ): задвижками, системами нагреватель-холодильник, устройствами с аналоговым управлением и другими. Тип выходного устройства определяется параметром SE.P (тип исполнительного механизма).

При использовании ИМ с аналоговым управлением 4..20мА или 0...10В (например электропневмопозиционеры), необходимо параметром **SE.P** определить тип ИМ как двухпозиционный (2.PoS).

При использовании ИМ с управлением «больше», «меньше» (например электромеханический КЗР), необходимо параметром **SE.P** определить тип ИМ как 3-х позиционный (3.PoS).

Для управления исполнительными механизмами (MM) имеются двухпозиционные реле с нормально разомкнутыми контактами, имеются также два аналоговых выхода с управлением по току ($4..20\,\text{MA}$) или по напряжению (0..10B). В базовой модификации выходные элементы имеют следующее назначение:

- Р1 управление воздушной заслонкой наружного воздуха и приточным вентилятором (заслонка электрически сблокирована с соответствующим вентилятором);
- Р2-Р3 или ЦАП1 управление запорно-регулирующим клапаном теплоносителя;
 - Р4 включение аварийного внешнего сигнализатора;
 - ЦАП2 управление запорно-регулирующим клапаном хладагента.

3.9. Управление трех позиционным ИМ

Прибор ТРМ133-01 может управлять трехпозиционным исполнительным механизмом (задвижкой) при помощи сигналов трех типов: «больше», «меньше», «стоп». Для управления таким ИМ используются ВЭ №2 и ВЭ №3.

Схемы подключения ИМ к Выходным элементам прибора даны в *прил. Б.* TPM133 может управлять трех позиционным ИМ с датчиком положения или без него.

TPM133 может работать с датчиками положения ИМ двух типов: резистивными или токовыми.

В конфигурации прибора ТРМ133-01 датчик положения ИМ может быть подключен ко Входу прибора №6.

При работе без датчика положения ИМ, положение ИМ вычисляется прибором по математической модели. Для того, чтобы математическая модель более близко соответствовала реальности, необходимо как можно точнее задать параметры реального ИМ:

- полное время хода ИМ (параметр tP.H);
- начальное положение ИМ (параметр LSP);
- время выборки люфта (параметр tFP).

Прибор по этим данным вычисляет текущее положение задвижки в любой момент времени.

Примечание. Неточное соответствие математической модели и реальной задвижки, а также неточное задание начального положения может привести к накоплению рассогласования. В результате этого в крайних положениях может быть подан сигнал на открытие или на закрытие, когда реальная задвижка уже полностью открыта или закрыта. Это может повлечь за собой поломку оборудования, поэтому не допускается использование задвижек без датчика положения без концевых выключателей. Следует учитывать, что управление задвижкой без датчика положения менее точно и приводит к накоплению ошибки.

3.10. Интерфейс связи

В приборе TPM133 установлен модуль интерфейса RS-485 для организации работы прибора по стандартному протоколу OBEH, который позволяет:

- программировать прибор с компьютера с помощью программыконфигуратора;
- считывать измеряемые величины из прибора в компьютер;
- передавать данные другим контроллерам (например, ОВЕН МВУ8).

Через порт RS-485 возможна передача значений конфигурационных параметров, опрос и диспетчеризация оперативных параметров.

Конфигурационные параметры – это параметры, определяющие настройку прибора. В конфигурационных параметрах настраивается структура прибора, работа входов и выходов прибора, настройки регуляторов и т.д. Конфигурационные параметры сохраняются в энергонезависимой памяти прибора.

Оперативные параметры – это параметры, отражающие текущее состояние регулируемой системы. В оперативных параметрах могут передаваться значения, измеренные датчиками и определенные вычислителями, значения мощности с регуляторов, состояния объектов и т.д. Оперативные параметры могут считываться и регистрироваться на ПК (через адаптер OBEH AC3) или на других приборах, соединенных в сеть RS-485 вместе с TPM133, благодаря чему имеется возможность подключения к SCADA-системе OWEN OPM2.

Протокол OWEN в сети RS-485 организован по принципу одного "ведущего" – только один прибор в сети может инициировать передачу пакета данных по сети. Остальные приборы являются ведомыми и могут только отвечать на посылаемые ведущим запросы. Ведущий прибор называется мастером сети.

Мастер посылает запрос, ответ параллельно могут прослушать все приборы в сети и использовать эти данные по мере необходимости.

Мастером сети может выступать компьютер, работающий по соответствующей программе, или прибор TPM133.

Передача данных производится по запросу мастера сети в соответствии с принятым для этой цели протоколом обмена. Информация о параметрах протокола записана на гибком магнитном диске (дискете), входящем в комплект поставки адаптера AC3.

Для защиты прибора от несанкционированного изменения рабочих параметров в нем предусмотрена блокировка записи заданных значений.

4. ФУНКЦИОНАЛЬНАЯ СХЕМА

4.1. Функциональная схема работы прибора в составе системы вентиляции приведена на рис. 4.1. Схема определяет функциональную конфигурацию системы и соответствует конфигурации прибора TPM133-x-**01** (см. Введение).

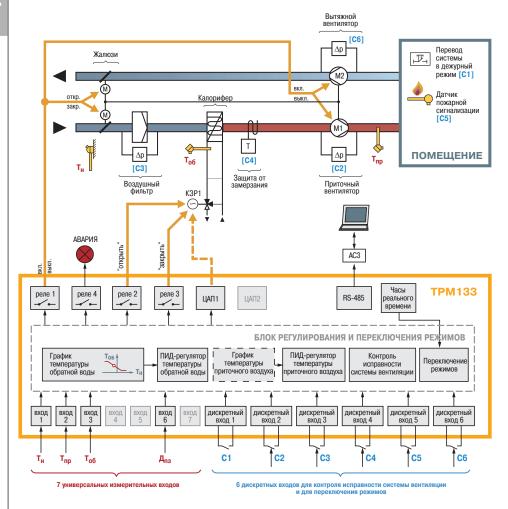


Рис. 4.1. Функциональная схема прибора в системе вентиляции

- **4.2. Блок-схема работы прибора** приведена на рис. 4.2. На ней отображены связи основных функциональных узлов и подсистем прибора и применены следующие сокращения:
 - ИЗМ измеритель блок обработки и преобразования информации, поступающей от датчика
 - PID пропорционально-интегрально-дифференциальный регулятор, обеспечивающий регулирование по заданной уставке или графику;
 - ЛМ блок преобразования управляющего сигнала для подачи на исполнительный механизм;
 - ПС преобразователь сигнала, позволяющий подключить различные ИМ;
 - машина состояния, управляет логикой прибора, переводит прибор в определённое состояние в зависимости от внешних факторов;
 - Реле дискретный исполнительный механизм.
 - ЦАП аналоговый исполнительный механизм;
 - ЧРВ часы реального времени.

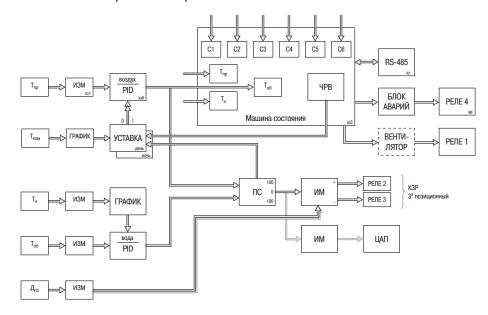


Рис. 4.2. Блок-схема работы прибора

4.3. Режимы работы прибора в системе вентиляции

4.3.1. При работе в составе системы прибор TPM133 с помощью входных термопреобразователей контролирует температуру наружного $(T_{_{\rm H}})$ и приточного воздуха $(T_{_{\rm np}})$, а также температуру обратной воды $(T_{_{\rm o6}})$, возвращаемой в теплоцентраль. Дополнительно может быть подключен датчик температуры воздуха в помещении $(T_{_{\rm o}})$. Одновременно прибор производит опрос подключенных к его входам C1, C2, C3,

С4, С5 и С6 контактных датчиков, контролирующих работу основного оборудования системы (см. п. 3.4). При обнаружении неисправности прибор формирует аварийный сигнал и выводит на индикатор сообщение об аварии.

По результатам контроля температуры и опроса датчиков ТРМ133 управляет работой вентилятора и жалюзи, осуществляющих подачу воздуха в систему вентиляции, а также регулирует положение запорно-регулирующего клапана (КЗР) в контуре циркуляции теплоносителя, обеспечивая автоматическое выполнение системой нижеперечисленных функций и режимов. После включения напряжения питания ТРМ133 автоматически переводит систему в один из режимов работы (табл. 4.1) в зависимости от температуры и от состояния датчиков на входах С1 ... С6.

Таблица 4.1 Названия режимов работы прибора TPM133

r.Stp*	Условное обозначение	Название режима работы
0	CTAPT	подготовка прибора к пуску
1	ПРОГРЕ	прогрев калорифера
2	ДЕЖУРН	дежурный режим
3	РОТИЧП	регулирование T _{пр}
4	OBPATH	защита от превышения T _{об}
5	3AMEP3	защита от замерзания воды в калорифере
6	летний	летний режим регулирования T _{пр}
7	деж.л	летний дежурный режим
8	ЗАМЕР.П	летняя защита от замерзания
9	йонрон	ночной режим
*r.Stp - оперативный параметр доступный для чтения - номер режима работы.		

4.3.2. Прогрев калорифера

 $4.3.2.1.\,\mathrm{B}$ режиме ПРОГРЕВ КАЛОРИФЕРА происходит его разогрев до заданных значений эксплуатационных параметров. Для этого прибор формирует сигнал на полное открывание КЗР, обеспечивая максимальную циркуляцию теплоносителя через калорифер. Жалюзи при этом закрыты, вентилятор подачи приточного воздуха выключен. Во время прогрева контролируются показания датчиков T_{μ} , $T_{\mu \rho}$, $T_{\rho \rho}$.

Время прогрева определяется пользователем, исходя из рабочих характеристик системы, и задается при программировании TPM133 в параметре t.nAG.

- 4.3.2.2. Система переводится в режим ПРОГРЕВ КАЛОРИФЕРА:
 - при запуске системы (см. п. 5.9.11);
 - после выхода из дежурного режима (см. п. 4.3.7);
 - после выхода из режима защиты калорифера от замерзания (см. п. 4.3.5);

- после перехода из летнего режима работы (см. п. 4.3.6) в зимний режим.
- 4.3.2.3. О работе системы в режиме ПРОГРЕВ КАЛОРИФЕРА пользователя информирует надпись «**ПРОГРЕ**» на верхней строке индикатора прибора.

Выход из режима прогрева осуществляется автоматически по истечении времени прогрева, заданного в параметре t.nAG.

4.3.3. Регулирование температуры приточного воздуха

После прогрева калорифера TPM133 анализирует текущее состояние температуры наружнего воздуха, обратной воды и приточного воздуха, проверяя выполнение в системе следующих условий:

- температура наружнего воздуха соответствует отопительному периоду $T_{\tt u} < {\tt t.LEt}$;
- значение температуры обратной воды соответствует эксплуатационным характеристикам $m{T}_{\sf ofo.min} < m{T}_{\sf ofo.min}$;
- значение температуры приточного воздуха больше аварийного значения $T_{\rm nn}$ > t . AVA .

То есть данный режим работы включается в отопительный период, при отсутствии опасности замораживания калорифера, и при нахождении температуры обратной воды в пределах границ, установленных пользователем относительно графика и ряда других аварийных ситуаций.

ВНИМАНИЕ! Переключение в режим РЕГУЛИРОВАНИЕ возможно только тогда, когда тумблер C1 находится в состоянии «выключено», а параметр duty (работа в ДЕЖУРНОМ РЕЖИМЕ) равен **off**.

В данном режиме прибор формирует команду на открытие жалюзи и включение вентилятора, осуществляющего подачу наружного воздуха, а также управляет положением ИМ, изменяя при этом поток теплоносителя через калорифер и поддерживая заданную температуру приточного воздуха.

Предельные значения температуры обратной воды $T_{\text{обр.min}}$ и $T_{\text{обр.max}}$ вычисляются прибором по графику $T_{\text{обр.rp.}} = f(T_{_{\rm H}})$ и заданным границам отклонения от него ${\tt Gr.up}$, ${\tt Gr.dn}$. При этом

$$T_{\text{ofp.min}} = T_{\text{ofp.rp.}} + \text{Gr.up};$$

 $T_{\text{ofp.max}} = T_{\text{ofp.rp.}} + \text{Gr.dn}.$

Параметры графика задаются пользователем при программировании прибора, исходя из эксплуатационных характеристик системы (см. п. 5.2.7)

Значения Gr.up и Gr.dn (GR.dn – должно быть отрицательным) задаются пользователем при программировании прибора.

Примерграфика $T_{\text{обр.гр.}} = f($ **Тнаруж.**) представлен на рис. 4.3.

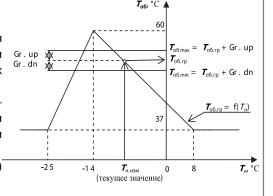


Рис. 4.3

Регулирование температуры приточного воздуха в данном режиме работы системы осуществляется по уставке $T_{yct.npиточ.}$, заданной пользователем при программировании в приборе параметра $SP_day / SP.LU$ для дневного режима и $SP_night / SP.LU$ для ночного (энергосберегающего) режима.

Возможно также регулирование температуры приточного воздуха в зависимости от температуры воздуха в помещениит (см. прил. 3)

- 4.3.3.4. О работе системы в режиме регулирования температуры приточного воздуха пользователя информирует надпись "ПРИТОЧ" на верхней строке индикатора прибора. О работе в энергосберегающем режиме информирует надпись "НОЧНОЙ".
- 4.3.3.5. Минимальное время нахождения в режиме **ПРИТОЧ (НОЧНОЙ)** определяется параметром t.nag. Это время необходимо для гарантированного определения исправности вентилятора с помощью датчика потока воздуха, подключенного к входу C2.

4.3.4. Защита от превышения температуры обратной воды

4.3.4.1. Защита от превышения температуры обратной воды осуществляется в режиме РЕГУЛИРОВАНИЕ Т $_{o6}$. Наличие данного режима регламентируется требованиями о недопустимости возврата в теплосеть обратной воды повышенной (относительно заданного графика) температуры.

Прибор ТРМ133 переводит систему в режим РЕГУЛИРОВАНИЕ T_{o6} , проверяя выполнение в системе следующих условий:

- температура обратной воды на выходе системы превышает вычисленное относительно графика предельное значение $T_{o6} > T_{o6,max} = T_{o6p,rp.} + Gr.up$.
- 4.3.4.2. В данном режиме прибор, продолжая формировать команду на открытие жалюзи и включение вентилятора, приостанавливает регулирование температуры приточного воздуха и начинает управлять положением ИМ по сигналу рассогласования между текущим значением Тоб и вычисленным по графику. Такой режим управления сохраняется до тех пор, пока температура обратной воды в системе не снизится до заданных значений $T_{\text{об}} > T_{\text{обого}} + \text{Gr.up} \text{d}_4$.
- 4.3.4.3. О работе ТРМ133 в режиме РЕГУЛИРОВАНИЕ T_{o6} пользователя информирует надпись "**ОБРАТН**" на верхней строке индикатора прибора.
- 4.3.4.4. Минимальное время нахождения в режиме **ОБРАТН** определяется параметром t.nag. Это время необходимо для гарантированного определения исправности вентилятора с помощью датчика потока воздуха, подключенного к входу C2.

4.3.5. Защита от замерзания воды в калорифере

4.3.5.1. Замерзание воды в калорифере грозит разрушением всей системы.

Прибор ТРМ133 переводит систему в режим защиты от замерзания проверяя выполнение в системе следующих условий:

- температура обратной воды ниже вычисленного предельного значения $T_{ob} = T_{ob} < T_{obs}$
- температура приточного воздуха ниже аварийного значения $\mathsf{T}_{\mathsf{aвар}}$ прибор переводит систему в режим ЗАЩИТА ОТ ЗАМЕРЗАНИЯ $\pmb{T}_{\mathsf{np}} < \pmb{T}_{\mathsf{aвар}}$

При переходе в этот режим прибор формирует команду на выключение вентилятора и закрытие жалюзи, а также полностью открывает КЗР для быстрого нагрева воды в калорифере. При этом на индикатор выводится сигнал АВАРИЯ.

- 4.3.5.2. Значение $T_{\text{авар}}$ задается пользователем при программировании параметра t.AVA.
- 4.3.5.3. Прибор переводит систему в режим ЗАЩИТЫ КАЛОРИФЕРА ОТ ЗАМЕРЗАНИЯ при условиях, указанных в п. 4.3.5.1, а также при неисправности любого из входных термопреобразователей, контролирующих параметры \boldsymbol{T}_{n} , \boldsymbol{T}_{o6} или \boldsymbol{T}_{np} , и при срабатывании контактного датчика С4 (датчик включения защиты от замерзания).
- 4.3.5.4. О работе ТРМ133 в режиме ЗАЩИТА ОТ ЗАМЕРЗАНИЯ пользователя информирует надпись "ЗАМЕРЗ" на верхней строке индикатора прибора.

Выход из режима осуществляется автоматически после устранения причины его включения, то есть для температуры приточного воздуха выполняется условие $T_{np} > t$. AVA + d2, для температуры обратной воды выполняется условие Тобр < + GR.dn + d_2 , отключение датчика C4. Переход к дальнейшей работе производится с задержкой по времени, необходимой для прогрева калорифера (см. п. 4.3.2).

4.3.6. Летний режим

4.3.6.1. При значении температуры $T_{_H} < T_{_{yст, net}}$ прибор переходит в режим ЛЕТНИЙ. В данном режиме контролируются показания датчиков $T_{_H}$, $T_{_{np}}$, $T_{_{oбp}}$. Датчик $T_{_{o6}}$ в этом режиме является информационным и сообщение об его Аварии выводится только на индикатор.

При переходе в этот режим прибор формирует команды на открытие заслонки наружного воздуха, включение вентилятора, если он был выключен. О работе системы в режиме ЛЕТНИЙ пользователя информирует надпись "**ЛЕТНИЙ**" на индикаторе прибора.

Выход из летнего режима происходит при понижении температуры наружного воздуха ниже T_{...} < t.LET - d2.

4.3.7. Дежурный режим

- 4.3.7.1. ДЕЖУРНЫЙ РЕЖИМ рекомендуется включать в выходные дни, в ночное время суток и т. п., когда нет необходимости в приточной вентиляции. В дежурном режиме ТРМ133 выключает вентилятор, закрывает жалюзи подачи наружного воздуха и регулирует температуру обратной воды по заданному графику. При охлаждении обратной воды до температуры ниже Тоб.min включается режим ЗАЩИТА ОТ ЗАМЕРЗАНИЯ.
 - 4.3.7.2. Перевод системы в ДЕЖУРНЫЙ РЕЖИМ может быть осуществлен с

клавиатуры TPM133 (кнопкой «пуск\стоп» или изменением значения параметра duty) или дистанционно – замыканием контактов коммутирующего устройства, подключенного к входу C1 прибора, или с компьютера.

- 4.3.7.3. О работе системы в ДЕЖУРНОМ РЕЖИМЕ пользователя информирует надпись "ДЕЖУРН" на индикаторе прибора. Выход из режима осуществляется автоматически после отмены команды, задающей данный режим, но переход к дальнейшей работе производится с задержкой по времени, необходимой для возможного прогрева калорифера.
- 4.3.7.4 Если прибор переведен в дежурный режим из летнего режима работы, то будет отрабатываться режим ДЕЖУРНЫЙ ЛЕТНИЙ. В этом режиме ТРМ133 выключает вентилятор, закрывает жалюзи подачи наружного воздуха, при этом регулирование температуры не производится.

4.3.8. Алгоритмы работы системы при срабатывании устройств С1, С2, С4, С5, С6

4.3.8.1. Вход С1 прибора предназначен для подключения контактов коммутирующего устройства, предназначенного для дистанционного перевода системы приточной вентиляции в ДЕЖУРНЫЙ РЕЖИМ работы по п. 4.3.7.

В качестве коммутирующего устройства для этой цели могут быть использованы «сухие» (т. е. не соединенные с внешним источником напряжения или тока) замыкающие контакты подходящего по назначению и конструкции тумблера, переключателя или таймера.

- 4.3.8.2. Вход С2 прибора предназначен для подключения датчика потока воздуха, косвенно отражающего неисправность вентилятора. Наличие протока воздуха контролируется в течение заданного времени диагностики вентилятора после его включения. При отсутствии сигнала С2 выдается сообщение об аварии и осуществляется переход системы в ДЕЖУРНЫЙ режим (при нахождении в режимах Регулирования T_{np} или $T_{oбp}$) или ДЕЖУРНЫЙ ЛЕТНИЙ (при нахождении в ЛЕТНЕМ режиме).
- 4.3.8.3. Вход СЗ прибора предназначен для подключения датчика засорения фильтра приточного вентилятора. Данный вход информационный и не влияет на режим работы.
- 4.3.8.4. Вход С4 прибора предназначен для подключения датчика обмерзания калорифера. При при срабатывании С4 выдается сообщение об аварии и осуществляется переход системы в режим ЗАЩИТЫ ОТ ЗАМЕРЗАНИЯ.
- 4.3.8.5. Вход C5 прибора предназначен для подключения датчика пожарной сигнализации.

При срабатывании этого датчика система переводится в ДЕЖУРНЫЙ РЕЖИМ.

4.3.8.6. Вход С6 предназначен для отображения состояния вытяжного вентилятора (аналогично по протоку воздуха).

5. ПОДГОТОВКА ПРИБОРА К РАБОТЕ

5.1. Монтаж прибора на объекте и подключение

5.1.1. Монтаж прибора

5.1.1.1. Подготовить место в шкафу автоматики.

Конструкция шкафа должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов. Следует использовать металлический шкаф с заземлением корпуса.

Смонтировать прибор на DIN-рейку.

5.1.1.2. При размещении прибора следует помнить, что при эксплуатации открытые контакты клемм находятся под напряжением, опасным для человеческой жизни. Поэтому доступ внутрь таких шкафов управления разрешен только квалифицированным специалистам.

5.1.2. Монтаж внешних связей

- 5.1.2.1. Общие требования
- 5.2.1.1. Питание прибора следует осуществлять от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети и плавкие предохранители на ток 1,0 А.

Питание каких-либо устройств от сетевых контактов прибора запрещается.

5.1.2.1.2. Соединение прибора с входными термопреобразователями сопротивления производить по трехпроводной схеме, при этом провода должны иметь длину не более 100 м и одинаковое сопротивление – около 15 Ом.

Примечание. Допускается соединение термопреобразователей сопротивления с прибором и по двухпроводной схеме, но при условии обязательного выполнения работ, приведенных в *прил.* В. При этом длина соединительных проводов должна быть не более 100 метров, а сопротивление каждой жилы – не превышать 15,0 Ом.

- 5.1.2.1.3. Соединение прибора с термоэлектрическими преобразователями производить непосредственно (при достаточной длине проводников термопар) или при помощи удлинительных компенсационных проводов, марка которых должна соответствовать типу используемых термопар. Компенсационные провода следует подключать с соблюдением полярности непосредственно к входным контактам прибора. Только в этом случае будет обеспечена компенсация влияния температуры свободных концов термопар на показания прибора. Длина линии связи должна быть не более 20 метров.
- 5.1.2.1.4. Соединение прибора с активными датчиками, выходным сигналом которых является напряжение или ток, производить по двухпроводной схеме. Длина линии связи должна быть не более 100 метров, а сопротивление каждой жилы не превышать 50,0 Ом.
- 5.1.2.1.5. Связь прибора по интерфейсу RS-485 выполнять по двухпроводной схеме с помощью адаптера интерфейса OBEH AC3. Длина линии связи должна быть не более 800 метров.

Подключение осуществлять витой парой проводов, соблюдая полярность

2) Для защиты входных цепей ТРМ133 от возможного повреждения зарядами статического электричества, накопленного на линиях связи «прибор-датчики», перед подключением к клеммной колодке прибора соединительные провода следует на 1...2 с соединить с винтом заземления щита.

5.1.2.3.2. После выполнения указанных работ прибор готов к дальнейшему использованию.

5.1.2.2. Указания по монтажу

необходимо облудить.

5.1.2.2.1. Подготовить кабели для соединения прибора с датчиками и с источником питания TPM133 и RS-485.

Провод "А" (+) подключается к выводу "А" прибора. Аналогично выводы "В" (-)

соединяются между собой. Подключение производить при отключенном питании

обоих устройств. Во избежании замыкания концы многожильных проводов

Для обеспечения надежности электрических соединений рекомендуется использовать многожильные медные кабели сечением около 0,75 мм², концы которых перед подключением следует тщательно зачистить и облудить. Зачистку жил кабелей необходимо выполнять с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т.е. чтобы оголенные участки провода не выступали за ее пределы.

5.1.2.2.2. При прокладке кабелей линии связи, соединяющие прибор с датчиками, следует выделить в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также кабелей, создающих высокочастотные и импульсные помехи.

Для защиты входных устройств TPM133 от влияния промышленных электромагнитных помех линии связи прибора с датчиками следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра.

ВНИМАНИЕ! Соединение общей точки схемы прибора с заземленными частями металлоконструкций запрещается.

5.1.2.3. Подключение прибора

- 5.1.2.3.1. Подключение прибора следует выполнять по схеме, приведенной в *прил*. В, соблюдая при этом нижеизложенную последовательность проведения операций.
 - 1) Произвести подключение ТРМ133 к источнику питания прибора.
 - 2) Подключить линии связи «прибор-датчики» к первичным преобразователям.
 - 3) Подключить линии связи «прибор-датчики» к входам ТРМ133.
 - 4) Подключить линии интерфейса RS-485.
 - 5) На неиспользуемые при работе прибора измерительные входы установить перемычки.

ВНИМАНИЕ!

1) Подключать активные преобразователи с выходным сигналом в виде постоянного напряжения (-50,0...+50,0 мВ или 0...1,0 В) можно непосредственно к входным контактам прибора. Подключение преобразователей с выходным сигналом в виде тока (0...5,0 мА, 0...20,0 мА или 4,0...20,0 мА) возможно только после установки шунтирующего резистора сопротивлением 100 Ом (допуск не более 0,1 %).

5.1.4. Порядок настройки прибора

5.1.4.1. При ПЕРВОМ включении (подаче напряжения питания) и нажатии клавиши "ввод" на индикаторе прибора отображается надпись «Главное меню» (далее по тексту обозначается « // »).

При отсутствии изображения на индикаторе необходимо настроить контрастность с помощью программируемого параметра ind.C.

- 5.1.4.2. Настройка прибора на объект производится в следующем порядке.
- 1. Произвести инициализацию прибора (//Настройка/Инициализация), т.е. установить *заводские значения* параметров.
 - 2. Произвести настройку входов и выходов:
 - выбрать типы датчиков, соответствующие подключенным ко входам прибора в программируемом параметре in-t (см. прил. E),
 - установить состояние входов (нормально разомкнутый/замкнутый) в параметре C.use,
 - выбрать нужный тип исполнительных механизмов (см. п. 3.7).
- 3. Проверить входы и выходы (//Настройка/Тестирование), чтобы убедиться в исправности каждого задействованного элемента системы.
- 4. Задать или откорректировать уставки температуры и влажности, график температуры обратной воды, протокол обмена по RS-485.
 - 5. Установить дату и реальное время (см. п. 5.2.8).
- 6. При внесении изменений в настройку системы вентиляции прибор следует дезактивировать во избежание некорректной работы системы. Для этого нужно задать параметру **IDLE** значение ON. После этого следует вновь произвести Активизацию системы (см. ниже п. 5.1.4.3).
- 5.1.4.3. Порядок включения: //Настройка/Активизация. После этого прибор автоматически перезагрузится.

Прибор после перезагрузки находится в режиме СТАРТ столько времени, чтобы получить достоверные данные с аналоговых и дискретных датчиков. Это время будет определяется по максимальному значению параметра PAU.1 из всех активных дискретных входов.

Активизированная система переходит в режим ПРОГРЕВ. Далее в зависимости от состояния аналоговых и дискретных датчиков прибор переходит в соответствующие режим работы. Например, в режим РЕГУЛИРОВАНИЕ при отсутствии аварийных ситуаций.

5.1.4.4. Режим РЕГУЛИРОВАНИЕ – основной режим работы прибора.

В этом режиме можно просматривать значения температур, состояние дискретных входов, текущую мощность ПИД-регулятора, входить в меню, менять уставки.

Режимы РЕГУЛИРОВАНИЕ, ТЕСТИРОВАНИЕ и РУЧНОЙ взаимоисключающие, в данный момент времени прибор может работать только в одном режиме, остальные отключены. Например, когда прибор находится в режиме РЕГУЛИРОВАНИЕ, нельзя производить ТЕСТИРОВАНИЕ, – это может привести к возникновению аварийных ситуаций. При тестировании режим РЕГУЛИРОВАНИЯ отключен, т.е. система не работает.

РУЧНОЙ режим отключается через 10 мин после последнего действия оператора, что защищает систему от ошибок оператора и аварии, при этом прибор автоматически переходит в режим РЕГУЛИРОВАНИЕ.

Вход в режим РУЧНОЙ возможен только после ввода пароля, предотвращающего несанкционированный доступ к изменению значений параметров.

ВНИМАНИЕ! Случайный переход в режим ТЕСТИРОВАНИЕ исключен, если система активизирована и находится в режиме РЕГУЛИРОВАНИЕ. Из режима РЕГУЛИРОВАНИЕ произведите автонастройку регуляторов (см. п. 5.2.4).

5.2. Программирование прибора

5.2.1. Общие сведения

Программирование предназначено для установки значений программируемых параметров прибора, определяющих его настройку и работу в процессе эксплуатации.

Припроизводстве прибора в него записываются заводские значения параметров. Пользователь может изменять значения параметров в соответствии с условиями и целями эксплуатации прибора. Значения программируемых параметров вносятся в энергонезависимую память прибора и сохраняются при отключении питания.

Программирование можно производить:

- кнопками, расположенными на лицевой панели прибора (см. п. 3.1);
- на персональном компьютере с помощью программы-конфигуратора (см. п. 3.9).

Для программирования с помощью кнопок предназначено ГЛАВНОЕ МЕНЮ прибора, структура которого приведена на рис. 5.1.

Структура меню

Символ ">" обозначает уровень иерархии пунктов меню, количество символов показывает глубину вложенности данного пункта в структуру ГЛАВНОГО МЕНЮ.

Рис. 5.1. Полная структура меню прибора

Примечание. Привыходе из режима редактирования (изменения значений) программируемых _{параметров} кнопку следует удерживать в течение 2 с., иначе команда не воспринимается.

5.2.2. Настройка измерительных входов

5.2.2.1. Ко входам 1...5 в зависимости от их типа подключаются датчики (см. табл. 2.2), условное обозначение и назначение которых приведено в табл. 5.1.

Таблица 5.1 Условные обозначения и назначение датчиков

№ Входа	Обозначение	Назначение
1	T _H	Измерение температуры наружного воздуха
2	T _{oб}	Измерение температуры обратной воды
3	T_{np}	Измерение температуры приточного воздуха
4	T _κ	Измерение температуры в помещении
5	T _д	Измерение температуры дополнительного
		датчика
6	Дпз	Датчик положения задвижки
		(при необходимости)
7	Д	Датчик влажности в помещении
		(при необходимости)

Входы 1...5 являются универсальными и к ним в произвольной комбинации могут быть подключены любые из первичных преобразователей (датчиков) приведенных в табл. 2.2 (п. 2):

Вход 6 – универсальный, предназначен для подключения датчика положения задвижки Дпз с резистивным или токовым выходом, при этом необходимо подключение внешнего резистора. Датчик положения КЗР используется при необходимости, это означает, что прибор может управлять КЗР и без него. Порядок проведения юстировки датчиков положения задвижки приведен в прил. Д.

Вход 7 предназначен для подключения датчика влажности Двл с *токовым* выходом. Он имеет встроенный резистор сопротивлением100 Ом.

- 5.2.2.2. Каждый канал имеет два независимых цифровых фильтра, предназначенных для подавления внешних помех и управляемых параметрами in.Fd (постоянная времени сглаживающего фильтра) и in.FG (полоса пропускания фильтра). Параметры цифровых фильтров задаются при первоначальной настройке прибора.
- 5.2.2.3. При обрыве термопары или коротком замыкании термопреобразователей сопротивления, токовых датчиков любой линии, соединяющей прибор с датчиком, а также при измерении температур больших 205 °C происходит переход системы в аварийный или дежурный режим и соответствующая информация отображается (на экране либо в сети).
- 5.2.2.4. Для настройки входа следует войти в пункт меню //Настройка/ Параметры/Входы аналоговые/.

Порядок настройки аналоговых входов представлен на рис. 5.2.

Рис. 5.2. Порядок настройки аналоговых входов

Примечание. Выбор номера, типа, значения параметра производить кнопками № и № Символ '<' обозначает изменяемое поле (в описании шагов указано серым фоном).

5.2.2.5. Каждый тип датчика имеет определенный набор параметров, связанных с особенностями его работы.

Для удобства по умолчанию выставляются заводские значения соответствующие определенному типу датчика.

При необходимости значения этих параметров можно изменять (табл. 5.2).

Таблица 5.2Параметры датчиков

Название	Допустимые
параметра	значения
Постоянная времени НЧ-фильтра	от 0 до 1800
Полоса пропускания пикового фильтра	от 0 до 9999
Период опроса датчика	от 0.1 до 30.0 с
Калибровка нуля	от –999 до 9999
Калибровка шкалы	от 0.9 до 1.1
Нижнее значение показаний токовых датчиков	от –999 до 9999
Верхнее значение показаний токовых датчиков	от –999 до 9999
Номер датчика	18
Тип датчика	18
	параметра Постоянная времени НЧ-фильтра Полоса пропускания пикового фильтра Период опроса датчика Калибровка нуля Калибровка шкалы Нижнее значение показаний токовых датчиков Верхнее значение показаний токовых датчиков Номер датчика

Соответствие кода и условного обозначения типу датчика приведено в прил. Е.

5.2.2.6. Сдвиг десятичной точки

При изменении значения параметра кнопками 🚫 и 🚫 десятичная точка не

меняет своего положения, что ограничивает максимальное значение параметра.

Например, на ЦИ2 отображается значение «8.974». При нажатии кнопок и будет происходить изменение значения, начиная с последнего разряда:

Максимальное значение, которое можно установить на ЦИ2, - «9.999».

Для ввода большего числа необходимо сдвинуть десятичную точку.

Для сдвига десятичной точки:

* До начала редактирования значения (т. е. когда на ЦИ1 мигает имя параметра)

нажмите и удерживайте кнопку ввод

Через некоторое время начнется циклический сдвиг вправо десятичной точки на ЦИ2: «8.974» → «89.74» → «897.4» → «8974» → «8.974» → ...

* Дождитесь момента, когда десятичная точка установится в нужное положение, и отпустите. Теперь Вы можете отредактировать значение параметра.

5.2.3. Настройка дискретных входов

Чтобы изменить настройки дополнительных дискретных входов необходимо выбрать пункт меню //Настройка/Параметры/Входы дискретные.

Меняя значение параметра d.inp выбрать номер Дискретного входа от 1 до 6. С помощью параметра С. Use настроить логику работы входа: open – на замыкание, close - на размыкание, off - не используется. В параметрах PAU. 1 и PAU. 0 задаются соответственно время задержки и выключения датчика в секундах.

5.2.4. Автонастройка ПИД-регуляторов

5.2.4.1. Общие сведения

В качестве основной настройки рекомендуется использовать синусоидальную настройку, так как она обеспечивает плавное изменение регулируемой величины и обладает лучшей по сравнению с АРФ и АЗВ помехоустойчивостью.

Варианты АРФ и АЗВ с возбуждением автоколебаний в контуре регулирования являются более чувствительными к возмущениям. Их можно использовать в тех случаях, когда применение синусоидальной настройки невозможно из-за неустойчивости системы регулирования.

Автонастройка производится для каждого канала измерения в отдельности.

5.2.4.2. Порядок автонастройки для трехпозиционного исполнительного механизма (задвижки)

5.2.4.2.1. Предварительная настройка

Предварительная настройка производится в следующем порядке.

1. Сконфигурировать прибор в соответствии с подключаемыми к нему датчиками и исполнительными механизмами.

Параметры автонастройки необходимо установить для 2-го (CHAn 2) и 3-го (СНАп 3) канала, соответствующие каналам регулирования приточного воздуха и обратной воды.

2. С помощью программы конфигуратора ((06. Регуляторы / Регулятор № Х /

Автонастройка регулятора / Параметры настройки), или через меню прибора (/ /НАСТРОЙКИ/ПАРАМЕТРЫ/АНР регулятора) установить значения параметра ¥0 Этот параметр указывает мощность в %, выдаваемую на ИМ при запуске режима предварительной настройки.

3. Установить значения параметра «Максимальное допустимое отклонение» Ydop, этот параметр измеряется в единицах регулируемой величины и задает амплитуду ее колебаний.

Установить тип исполнительного устройства в параметре R.el - «3-х позиционный»

Установить время полного хода исполнительного механизма из одного крайнего положения в другое в параметре t.val, в секундах.

Установить значение параметра «допустимое отклонение мощности» Ptol, задающего отклонение мощности в процентах от установившегося значения. Рекомендуемый интервал 5...10 %. Меньшее значение следует устанавливать при отсутствии в процессе настройки возмущающих воздействий на объект или при наличии ограничений на условия эксплуатации объекта.

Операции, выполняемые с прибором на объекте

- 1. Зайти в пункт меню // Настройка / Автонастройка. Кнопками выбрать канал регулирования и подтвердить выбор нажатием кнопки.
- 2 Задать желаемое значение начальной выходной мощности U,, подтвердить выбор нажатием кнопки Бол
- 3. Наблюдать за процессом изменения регулируемой величины и выходного сигнала регулятора по цифровому индикатору. При этом прибор должен работать в режиме двухпозиционного регулирования с переключением выходного сигнала регулятора между максимальным $P_{max} = P_{etab} + P_{tal}$ и минимальным $P_{min} = P_{etab} - P_{tal}$ уровнями. Р - значение выходного сигнала регулятора, при котором был запущен процесс автонастройки.
- 4. Дождаться завершения настройки, на что укажет сообщение «done» на индикаторе, и нажать кнопку выход. Прибор возвратится в тот режим, из которого была запущена автонастройка.

5.2.4.3. Порядок автонастройки для двухпозиционного исполнительного Механизма (ЦАП)

5.2.4.3.1. Предварительная настройка

Предварительная настройка производится в следующем порядке.

1. Сконфигурировать прибор в соответствии с подключаемыми к нему датчиками и исполнительными механизмами.

Параметры автонастройки необходимо установить для 2-го (СНАп 2) и 3-го (СНАп 3) канала, соответствующе каналам регулирования приточного воздуха и обратной воды.

- 2. С помощью программы конфигуратора ((06. Регуляторы / Регулятор №X / Автонастройка регулятора / Параметры настройки), или через меню прибора (// НАСТРОЙКИ/ПАРАМЕТРЫ/АНР регулятора) установить значения параметра № Этот параметр указывает мощность в %, выдаваемую на ИМ при запуске режима предварительной настройки. 33
- 3. Установить тип исполнительного устройства в параметре **R.el** «2-х позиционный».

Операции, выполняемые на объекте

- 1. Зайти в пункт меню //Настройка/Автонастройка. Кнопками и Выбрать канал регулирования и подтвердить выбор нажатием кнопки
- 2. Задать желаемое значение начальной выходной мощности \mathbf{U}_{t} , подтвердить выбор нажатием кнопки \mathbf{B} .
- 3. Наблюдать за процессом изменения регулируемой величины и выходного сигнала регулятора по цифровому индикатору. При этом прибор должен работать в режиме двухпозиционного регулирования с переключением выходного сигнала регулятора между максимальным Pmax = 100 % и минимальным Pmin = 0 % уровнями.
- 4. Дождаться завершения настройки, на что укажет сообщение «done» на индикаторе и нажать кнопку возвращается в тот режим, из которого была запущена автонастройка.

5.2.4.4. Индикация параметров настройки

Во время проведения настройки нажатием кнопки возможно производить смену отображения текущих параметров:

- полосы пропорциональности регулятора Рь [ед/%];
- постоянной интегрирования ti [c];
- модуля вектора KЧX замкнутой системы в окрестности резонансной частоты для текущих настроек регулятора ${\tt rs}$;
- фазы вектора КЧХ **GS** [град];
- среднеквадратичного отклонения модуля вектора KЧX по nn расчетным периодам ds (nn количество расчетных периодов).

5.2.4.5. Остановка автонастройки

Для прерывания процесса настройки следует нажать кнопку . На индикаторе появится надпись «НАLT» – запрос на подтверждение выхода. Нажмите кнопку для подтверждения, или кнопку . – для отмены операции. Для просмотра текущих параметров по другим каналам следует нажать кнопку . На индикаторе появится

надпись «HIDE», подтвердить нажатием , процесс автонастройки при этом не останавливается. Вернуться в режим автонастройки можно одновременным нажатием кнопку и

5.2.5. Задание уставок температур

Изменить уставки можно с помощью меню «Быстрый доступ», предназначенное для быстрого доступа к параметрам, наиболее часто изменяемым пользователем. Это сделано для упрощения процедуры внесения изменений.

5.2.6. Задание графика температуры обратной воды и приточного воздуха

В приборе ТРМ 133 уставка температуры обратной воды и приточного воздуха может быть задана функцией от другой переменной с помощью графика. Для этого в приборе предусмотрена возможность задания двух графиков.

5.2.6.1. Общие сведения

Для задания графика обратной воды или графика приточного воздуха необходимо войти в меню //Настройка/Параметры/Графики.

График можно задать не более чем десятью (**10**) точками [минимальное количество точек две (**2**)].

Например, график, приведенный на рис. 5.4, задается пятью (5) точками.

Примечание. Награфике не должно быть менее 2 точек.

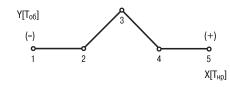
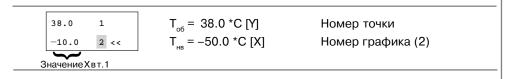



Рис. 5.4. График температуры обратной воды

График №1 используется для коррекции уставки обратной воды, график №2 может быть использован для коррекции уставки температуры приточного воздуха.

Всвязистем, что график определяет математическую функцию (одному значению аргумента соответствует одно значение функции), программа не допускает нарушения порядка следования точек относительно оси X(1,2,3,...), т.е. значение X в т. 2. При попытке ошибочного ввода задаваемые точки автоматически перенумеровываются (по возрастанию значения X). При изменении координаты X программа автоматически меняет номер точки, если значение X в этой точке превышает значение X в точке, введенной ранее.

Описание экранной формы:

5.2.6.2. Добавление точки

Для задания графика или добавления в него точки нужно установить указатель "<<" на точку, после которой следует добавить новую. Далее выполнить операции г) – ж) на рис. 5.5.

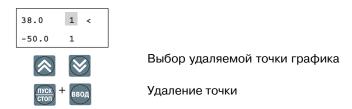

Если график не задан, следует выполнить операции, приведенные на рис. 5.5.

Рис. 5.5. Порядок действий при добавлении точки графика

5.2.6.3. Удаление точки

При корректировке графика часто необходимо удалить выбранную точку графика. Для этого необходимо выполнить следующие действия:

После этого в списке на одну точку станет меньше. Таким образом можно удалить все точки графика.

5.2.6.4. Изменение графика

Изменить координаты точки нельзя. Ее можно удалить, а потом добавить новую с нужными координатами. Для этого необходимо выполнить следующие действия:

5.2.7. Настройка обмена данными

Для перевода прибора в режим Подчиненного/Мастера сети необходимо выполнить следующие действия.

- 1. Войти в пункт меню //Настройка/Параметры/Мастер сети RS-485 и нажать кнопку вод .

3. Режим работы Подчиненный/Мастер определяется в параметре **r.Co**. При работе прибора в режиме Подчиненного на индикаторе высвечивается надпись «**rab**», в режиме Мастера – надпись «**boss**».

Для смены значения параметра **r** . **CO** подтвердить изменение этого параметра нажатием кнопки кнопками или выбрать нужное значение.

Затем нажатием кнопки выход подтвердить изменение параметра или нажатием на кнопку выход выйти из режима редактирования без изменения.

4. Выйти в режим выбора деревьев параметра нажатием и удержанием кнопки

5. Выйти из режима программирования, нажав кнопку

Настройка ПК. Изменение сетевых параметров прибора ТРМ133 можно производить не только с передней панели, но и из программы-конфигуратора. Перед сменой сетевых настроек необходимо установить связь программы с прибором на старых сетевых настройках.

Смена сетевых настроек производится в дереве «Параметры прибора» → «Сетевые параметры прибора». Измененные сетевые параметры помечены зелёным шрифтом, после их записи в прибор шрифт становится чёрным. До тех пор, пока изменённые параметры не будут записаны, прибор продолжает работать с прежними сетевыми настройками.

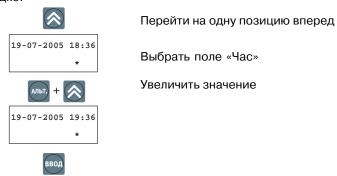
После записи в прибор измененных Сетевых параметров прибора Конфигуратор ТРМ133 автоматически предлагает сменить Сетевые параметры программы.

При неустойчивой связи с прибором (на это указывают частые сообщения об ошибках при чтении или записи параметров) необходимо попробовать изменить скорость обмена данными. Например, на «медленных» ПК, если скорость составляла 9600 бит/с, следует попробовать установить скорость 38400 или 57600 бит/с.

Сетевые параметры программы задаются в дереве: «Параметры компьютера» > Сетевые параметры программы».

После задания Сетевых параметров программы необходимо проверить наличие связи с прибором, считав его имя. Для этого надо в Программе-конфигураторе выбрать пункт меню //Проверить связь с прибором (rev, dev). Аналогичная процедуры выполняется при нажатии кнопки «Проверка» после запуска Программыконфигуратора.

Если произошла ошибка считывания, следует проверить правильность установки сетевых параметров программы, соответствие их сетевым настройкам прибора, правильность подключения прибора к компьютеру через адаптер ОВЕН АС-3.


Изменение сетевых настроек программы может потребоваться при одновременной работе с несколькими приборами в сети. При этом надо учесть, что они должны отличаться только Базовыми сетевыми адресами (параметр Addr), а остальные сетевые параметры должны быть одинаковыми.

5.2.8. Установка даты и времени

Для установки даты и времени следует выбрать пункт меню //Главное меню/ Настройка/Дата и Время. На цифровом индикаторе отобразится следующее:

Число-Месяц-Год Час:Минуты

Для изменения даты и времени нужно последовательно устанавливать курсор (*) под каждым изменяемым полем и используя комбинацию кнопок или уменьшать значение в следующем порядке:

С этого момента часы будут работать даже когда прибор выключен (при условии что установлена и не разряжена батарейка). При замене батарейки возможен сброс значений, рекомендуется повторить процедуру установки даты и времени.

5.2.9. Запуск системы вентиляции (активизирование)

Машина Состояния (МС) управляет логикой работы прибора (т.е. переход в Режим работы, соответствующий текущему состоянию системы). Для управления МС предусмотрен параметр idle - Режим ожидания. По умолчанию прибор имеет заводское значение параметра idle = on (состояние ожидания). Это означает, что машина Состояния прибора неактивна, и прибор находится в неактивном состоянии, предназначенном для проведения различных настроек и проверок функциональных элементов прибора.

На заключительном этапе настройки прибора для перевода системы в активное (рабочее) состояние необходимо его Активизировать. Для этого нужно выбрать пункт меню//Настройка/Активизировать. При этом параметр idle = OFF (система активна). После этого прибор переходит в режим ПРОГРЕВ, затем в режим, соответствующий текущему состоянию системы. При этом в меню «Настройка» пункты «Инициализация» и «Тестирование» не отображаются во избежание несанкционированного запуска этих процедур.

При изменении конфигурации системы вентиляции необходимо дезактивировать прибор. Для этого в пункте меню «//Настройка/Машина состояния необходимо установить значение параметра idle = ON (состояние ожидания).

TPM13(

6. ЭКСПЛУАТАЦИЯ ПРИБОРА

6.1. Включение прибора

После включения прибора в сеть в течение нескольких секунд происходит инициализация данных, на индикаторе отображается название прибора и версия программного обеспечения. После этого прибор переходит в режим СТАРТ (обозначения режимов работы прибора приведены выше в табл. 4.1).

При первом включении прибор будет оставаться в режиме CTAPT до момента Активизации. Если прибор активизирован, то после режима CTAPT он перейдет в режим ПРОГРЕВ, а затем после опроса состояния датчиков перейдет в режим, соответствующий текущему показанию датчиков.

6.2. Меню «Быстрый доступ»

Для удобства эксплуатации и упрощения процедуры внесения изменений в параметры прибора служит меню «Быстрый доступ», представленное в табл. 6.1. Дополнительно в приборе предусмотрена возможность вызова этого меню нажатием кнопки

Меню «Быстрый доступ»

Таблица 6.1

Изображение на индикаторе	Параметр	Заводские установки
Дежурный Режим	duty	off
Уставка Т _{пр} ДЕНЬ	[F.pri]Sp.lu	50
Уставка Т _{пр} НОЧЬ	[F.nig]Sp.lu	50
Время ДЕНЬ	t.day	08:00
Время НОЧЬ	t.nig	20:00
Дата и Время	rtC	-

Время ДЕНЬ - время перехода в дневной режим работы,

в котором Уставка = T_{nn} **ДЕНЬ**;

Время НОЧЬ - время перехода в ночной режим работы,

в котором Уставка = T_{nn} **НОЧЬ**;

Уставка T_{np}ДЕНЬ – изменяет значение уставки температуры приточного воздуха, действующей в дневное время, определяемое по встроенным часам, [F.pri] Sp.lu;

Уставка T_{np} НОЧЬ – изменяет значение уставки температуры приточного воздуха, действующей в ночное время, определяемое по встроенным часам, [F.nig] Sp.lu.

Дежурный режим – вызывает переход системы в Дежурный режим: изменяет параметр **Duty**. Дублирует возможность перевода системы в дежурный режим сетевой командой и по состоянию входа **C1**.

Дата и Время – изменяет значения текущего времени и даты в приборе, см. п. 5.2.8.

Примечание. Символ 'S' на дисплее отображается также, как и цифра '5', т.е. 5.

6.3. Диагностика состояния входов и аварийные ситуации

6.3.1. При возникновении нештатной ситуации, вызванной ошибкой измерения или изменением состояния дополнительных входов, на индикаторе в верхнем правом углу появляется сообщение с символом **▲** (рис. 6.1, а).

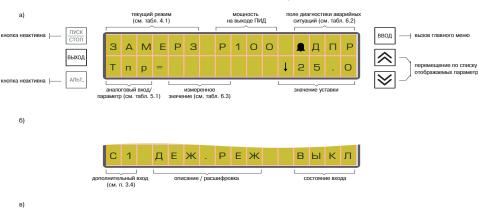


Рис. 6.1

1 3 : 3 4

2 8

время

Перечень и источники возможных аварийных ситуаций и соответствующие условные обозначения на индикаторе приведены в табл. 6.2.

Таблица 6.2

Источники информационных и аварийных сообщений

Условное	Описание нештатной
обозначение	ситуации
A	Символ обозначает возникновение нештатной ситуации
Д _{об}	Неисправность датчика обратной воды
	(после диагностики, табл. 6.3)
Дпр	Неисправность датчика приточного воздуха
-	(после диагностики, табл. 6.3)
Д	Неисправность датчика наружного воздуха
	(после диагностики, табл. 6.3)
T _H	Температура наружного воздуха вышла за допустимые пределы
T _{o6}	Температура обратной воды вышла за допустимые пределы
T _{mp}	Температура приточного воздуха вышла за допустимые пределы
C1C6	Изменение состояния прибора, связанное с состоянием
	дискретных входов

Рис. 6.2. Элементы управления при работе с меню

На индикаторе в поле диагностики аварийных ситуаций (рис. 6.1) сохраняется и не сбрасывается кнопкой информация об источнике, первым приведшем к переходу в текущий аварийный режим. Сброс возможен при снятии всех аварийных условий и смене режима работы прибора. Это сделано для возможности выяснения причин возникновения аварийной ситуации.

6.3.2. При работе прибора непрерывно производится диагностика состояния измерительных входов, предотвращающих возникновение различных нештатных ситуаций, связанных с неисправностью датчиков. При возникновении подобной ситуации код ошибки выводится на индикатор в соответствующем поле сообщений (рис. 6.1, а). Коды ошибок измерения приведены в табл. 6.3.

Таблица 6.3

Коды ошибок измерения

Сообщение на индикаторе	Причина ошибки		
Ad.Er	Ошибка в работе прибора		
	Обрыв датчика (термопреобразователя)		
0.0.0.0.	Короткое замыкание		
LLLL	Измеренное значение слишком мало		
нннн	Измеренное значение слишком велико*		
OCL.L	Измеренная температура холодного спая слишком мала		
OCL.H	Измеренная температура холодного спая слишком велика		
OFF	Текущий канал выключен (из очереди измерений)		
***	Значение вычисляется от графика (предупреждение при		
отсутствии данных для вычисления графика)			
* Аварийный сигнал формируется при T >199,9 °C.			

6.3.3. На время неисправности любого из датчиков в каналах Тн, Тобр или Тпр прибор переводит систему в режим защиты калорифера от замораживания.

В зависимости от причины возникновения аварийной ситуации следует проводить соответствующие операции (AD.er) – вышелиз строя прибор, обратиться в сервисную службу; ——— обрыв соединительной линии датчика; LLLL – выход из строя датчика или ошибка калибровки и т.д.).

При восстановлении работоспособности неисправных датчиков аварийный сигнал в верхнем правом углу (рис. 6.1, а) сохраняется. Для сброса аварийного сигнала необходимо нажать на кнопку разора.

6.3.4. Отображаемое обозначение (см. рис. 6.1) функционального назначения дополнительного дискретного входа (см. п. 3.4) приведено в табл. 6.4.

Таблица 6.4 Отображение состояния дискретных входов

датчик контроля неисправности вытяжного

Вход	Условное обозначение	Описание
C1	деж.реж	коммутирующее устройство для дистанционного
		перевода системы в дежурный режим
C2	пр.вент	датчик контроля неисправности приточного
		вентилятора по потоку воздуха
C3	фильтр	датчик контроля засорения фильтра приточного
		(вытяжного) вентилятора
C4	замерз	датчик включения и отображения режима защиты
		от замерзания
C5	пожар	датчик пожарной сигнализации

6.4. Дежурный режим работы

выт.вент

C6

6.4.1. Для удобства пользователя предусмотрен быстрый перевод прибора в дежурный режим. Для этого следует нажать кнопку от и удерживать ее в течение ~3 с. После этого прозвучит короткий звуковой сигнал и изменится значение параметра duty.

вентилятора

- 6.4.2. Для возврата прибора в предыдущее состояние следует повторить действия, приведенные в п. 6.4.1.
- 6.4.3. Значение параметра duty каждый раз меняется на противоположное (on/off или вкл/выкл соответственно).

Примечание. Следует обратить внимание, что режим защиты от замерзания имеет приоритет выше дежурного режима, т.е. включение дежурного режима невозможно при активном режиме защиты от замерзания.

6.5. Режим ручного управления

Режим Ручного управления предназначен для проверки функционирования прибора в системе или задания выходной мощности регулятора. Ручное управление возможно только при активированном состоянии прибора (параметр **idle=OFF**). Для запуска режима следует выбрать меню // Ручной режим.

Для ручного задания уставки (выходной мощности) необходимо выбрать канал регулирования, выбрать тип управления. Затем изменить значение и сохранить его. Пошаговая инструкция приведена на рис. 6.3.

TH = 6.0 1.1 Sp<	В этом режиме возможны следующие операции:
	Выбор канала регулирование(номера датчика), например тоб — канал температуры обратной воды тпр — канал температуры приточного воздуха
Tmp = 27.5 1.2 Sp 999999.	Выбор регулируемой величины:
ввод	№ – значение выходной мощности ПИД sp – уставка регулятора
Tmp = 27.5 1.2 Pw 17<	
АЛЬТ. + ВВОД	Переключиться в Ручной Режим (на активность указывает символ '<')
× / ×	Увеличение / уменьшение значения выбранной величины
Tmp = 27.5 1.2 Pw 20<	
ввод	Сохранить заданное значение
АЛЬТ. + ВВОД	После окончания проверки выйти из Ручного Режима (отсутствие символа '<')
Рис. 6.3.	Режим ручного управления

Во время выбора канала регулурования возможно отображение ер: следующей служебной информации:

 – по выбранному каналу невозможно регулирование.

C.off - о ш и б к а : и с п о л н и т е л ь н ы й механизм не подключен к регулятору.

 ${\tt C.err} - {\tt O} \ {\tt Ш} \ {\tt И} \ {\tt б} \ {\tt к} \ {\tt а}$ конфигурации (нет канала в объекте).

Рис. 6.3. Режим ручного управления

6.6. Принудительная перезагрузка прибора

Примечание. Обычное отключение прибора от питающей сети не приведет к перезагрузке, так как информация о состоянии прибора сохраняется благодаря встроенному источнику питания (батарейка).

ВНИМАНИЕ!

Прибор ТРМ133 предназначен для круглогодичной непрерывной работы, для этого предусмотрены режимы, обеспечивающие защиту системы. ЗАПРЕЩАЕТСЯ выключение прибора в зимнее время во избежание замораживания калорифера.

7. МЕРЫ БЕЗОПАСНОСТИ

- 7.1. По способу защиты от поражения электрическим током прибор соответствует классу 0 по ГОСТ 12.2.007.0-75.
- 7.2. В приборе используется опасное для жизни напряжение. При установке прибора на объекте, а также при устранении неисправностей и техническом обслуживании необходимо отключить прибор и подключаемые устройства от сети.
- 7.3. Не допускается попадание влаги на выходные контакты выходного разъема и внутренние электроэлементы прибора. Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.
- 7.4. Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1. При выполнении работ по техническому обслуживанию прибора соблюдать меры безопасности, изложенные в разд. 8.
- 8.2. Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:
 - очистку корпуса прибора, а также его клеммных колодок от пыли, грязи и посторонних предметов;
 - проверку качества крепления прибора на DIN-рейке;
 - проверку качества подключения внешних связей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

9. МАРКИРОВКА И УПАКОВКА

При изготовлении на прибор наносятся:

- наименование прибора и вариант его модификации;
- класс точности прибора;
- изображение знака утверждения типа;
- изображение знака соответствия требованиям нормативно-технической документации;
- товарный знак предприятия-изготовителя;
- уникальный штрих-код (заводской номер);
- год изготовления;
- диапазон напряжений питания и потребляемая мощность.

Упаковка прибора производится в потребительскую тару, выполненную из гофрированного картона.

10. ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

Прибор должен транспортироваться в упаковке при температуре от минус 25°C до + 55°C и относительной влажности воздуха не более 95 % (при 35°C).

Транспортирование допускается всеми видами закрытого транспорта.

Транспортирование на самолетах должно производиться в отапливаемых герметизированных отсеках.

Условия хранения ТРМ133 в транспортной таре на складе потребителя должны соответствовать условиям 1 по ГОСТ 15150-69.

Воздух помещения не должен содержать агрессивных паров и газов.

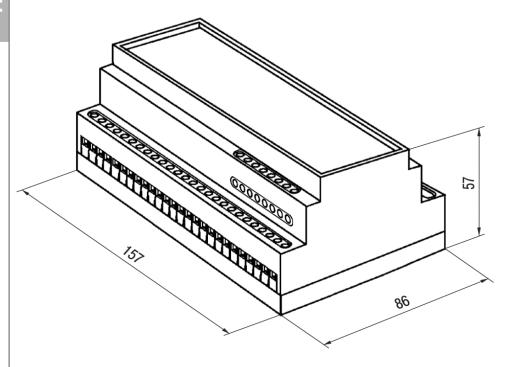
11. КОМПЛЕКТНОСТЬ

Прибор ТРМ133	1 шт.
Комплект монтажных частей	1 шт.
Паспорт и руководство по эксплуатации	1 шт.
Гарантийный талон	1 шт.

12. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 12.1. Изготовитель гарантирует соответствие прибора ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.
 - 12.2. Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 12.3. В случае выхода прибора из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Для отправки в ремонт необходимо:


- заполнить Ремонтную карту в Гарантийном талоне;
- вложить в коробку с прибором заполненный Гарантийный талон;
- отправить коробку по почте или привезти по адресу:

109456, г. Москва, 1-й Вешняковский пр., д.2

тел.: 742-48-45, e-mail: rem@owen.ru.

- ВНИМАНИЕ! 1. Гарантийный талон не действителен без даты продажи и штампа продавца.
 - Крепежные элементы вкладывать в коробку не нужно.

ГАБАРИТНЫЙ ЧЕРТЕЖ

ПРОГРАММИРУЕМЫЕ ПАРАМЕТРЫ

//Настройка/Параметры/Объекты/obJ 1	Обозначение	Диапазон значений	Заводское значение
		параметра	значение
Количество объектов	n.Obj	1	1
Количество каналов	n.Ch	36	3
		3-для простой системы	
		4- для системы с датчиком	
		комнатной температуры	
		6- для системы с обратной	
		связью по положению ИМ	
Папка Канала № 1n.Ch	F.SAU		

//Настройка/Параметры/Объекты/obJ 1/F.SAU x (x — номер канала)

2-ой канал – регулирование температуры приточного воздуха

3-й канал – регулирование температуры обратной воздуха

Наличие регулятора в канале	rEGL	Yes/No	Yes
Наличие инспектора в канале	inSP	в данной модификации не используется	No
Папка Вычислителя	P.CLC	в данной модификации не используется	
Папка Регулятора	REG		
Папка Регистратора	RTC.P	в данной модификации не используется	

//Настройка/Параметры/Объекты/obJ 1/F.SAU x/rEG

Зона нечувствительности	đb	09999 [ед. изм.]	0.05
Режим работы регулятора	rEG.T	rEGL/CPr	rEGL
Коммутатор подключенный к регулятору	od.tP	в данной модификации не используется	Ctr.1
Наличие сигнализации обрыва контура	Lba	в данной модификации не используется	oFF
Папка Коммутатора	Ctr.P	в данной модификации не используется	
Папка ПИД-Регулятора	rC.PR		
Папка Уставок	SP.Pr	в данной модификации не используется	

//Hастройка/Параметры/Объекты/obJ 1/F.SAU x/rEG/rC.PR

Полоса пропорциональности	pb	19999 [ед. изм.]	120
Постоянная интегрирования	ti	065535	0.30
отношение ПД к ПИ	td.ti	00.3	0.125
Ограничение максимума интеграла	i.Upr	-100100 [ед. изм.]	100
Ограничение минимума интеграла	i.min	-100100 [ед. изм.]	0
Номинальная мощность	P.nom	-100100 [ед. изм.]	0

//Настройка/Параметры/СЛУЖЕБНЫЕ

Периодичность обновления информации	ind.r	01 [c]	0.01
Режим маскировки параметров	Ind.S	в данной модификации	
		не используется	
Номер выходного устройства для сигнала АВАРИЯ	AL.rE	26	4
Удержание сигнала «Авария» после выхода из	AL.Hd	ON/OFF	ON
аварийной ситуации			
Состояние выходного устройства в момент аварии	AL.St	ON/OFF	ON
Режим блокировки ручного управления	bL.rU	ON/OFF	OFF
Режим ожидания прибора (не_активность)	idle	ON/OFF	ON
Контраст индикатора	ind.C	0200	200
Подсветка индикатора	ind.L	ON/OFF	ON
Звуковое подтверждение	Beep	ON/OFF	ON
нажатия кнопок			

//Настройка/Параметры/ВХОДЫ АНАЛОГОВЫЕ/dt x (x- номер входа)

Тип датчика	in-t	(см. табл. 2.3)	r.391
Постоянная времени сглаживающего фильтра	in.Fd	01800 [c]	0
Полоса пропускания фильтра	in.FG	09999 [ед. изм.]	0.0
Период опроса датчика	itrL	0,330 [c]	3
Коррекции «Сдвиг характеристики»	in.SH	-9999999 [ед. изм.]	0.0
Коррекции «Наклон характеристики»	in.SL	0.91.1	1
Нижняя граница диапазона измерения	Ain.L	-9999999 [ед. изм.]	0
(для активного датчика)			
Верхняя граница диапазона измерения	Ain.H	-9999999 [ед. изм.]	100
(для активного датчика)			

//Настройка/Параметры/Входы ДИСКРЕТНЫЕ

Использование контакта дискретного датчика	C.use	Open/close	Open
(нормальнозамкнутый или нормальноразомкнутый)			
Время задержки ВЫКЛючения	PAU.0	079.9	3.0
дискретного датчика, с			
Время задержки ВКЛючения	PAU.1	079.9	3.0
дискретного датчика, с			

//Настройка/Параметры/ИНТЕРФЕЙС RS-485/FltR oo

Скорость обмена	bps	2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 [κδυτ/c]	9600
Длинна слова данных	Len	7 или 8 [бит]	8
Контроль по четности	Prty	NO EVEN ODD	no
Количество стоп-бит	Sbit	1 или 2	1
Размер сетевых адресов	A.len	8 или 11 [бит]	8
Собственный адрес прибора	Addr	02047	16
Задержка ответа, мс	rs.dL	050 [мс]	50

//Настройка/Параметры/МАСТЕР СЕТИ RS-485

Режим работы	r.CO	в данной модификации	
		не используется	
Период опроса	t.q	в данной модификации	
		не используется	
Размер очереди опроса	nu.qu	в данной модификации	
		не используется	
Имя параметра	p.chr	в данной модификации	
		не используется	
Адрес опрашиваемого прибора	Adr	в данной модификации	
		не используется	
Папка очереди опроса	q.n	в данной модификации	
		не используется	

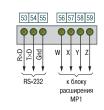
G.
3
Œ
≥
n

Включение дежурного режима	duty	On/off	Off
Аварийная температура для приточного	t.ava	0999.9[ед. изм.]	10.0
воздуха			
Уставка летней температуры	t.let	0999.9[ед. изм.]	12.0
Время прогрева калорифера и диагностики	t.nag	0166.39 [мин]	0.05
вентилятора			
Время начала дня	t.day	023.59 [час]	8.00
Время начала ночи	t.nig	023.59 [час]	20.00
Сдвиг графика для максимума температуры	Gr.Up	0999.9 [ед. изм.]	5.0
обратной воды			
Сдвиг графика для минимума температуры	Gr.dn	– 999.90 [ед. изм.]	-5.0
обратной воды			
Сдвиг для уставки летней температуры	d_1	– 999.9999.9 [ед. изм.]	5.0
Сдвиг для аварийной температуры приточного	d_2	– 999.9999.9 [ед. изм.]	5.0
воздуха			
Сдвиг для минимума температуры	d_3	– 999.9999.9 [ед. изм.]	1.0
обратной воды			
Сдвиг для максимума температуры	d_4	– 999.9999.9 [ед. изм.]	5.0
обратной воды			
Значение уставки Тпр ДНЕВНОЙ	F.pri/Sp.lu	0100.0 [ед. изм.]	50.0
Значение уставки Тпр НОЧНОЙ	F.nig/Sp.lu	0100.0 [ед. изм.]	50.0

//Настройка/Параметры/ ВХОДНЫЕ УСТРОЙСТВА

Тайм-аут аварии	Alr.t	в данной модификации	
		не используется	
Аварийная мощность	P.Alr	в данной модификации	
		не используется	
Ограничение роста мощности	P.rES	0100%	0
Ограничение максимальной мощности	P.Upr	-100100%	100
Ограничение минимальной мощности	P.min	-100100%	0
Номер фильтра для входного сигнала	F.in	в данной модификации	
		не используется	
Тип характеристики преобразователей	Cp.t	в данной модификации	
входных сигналов		не используется	
Входное значение по абсолютной величине	AbS.P	в данной модификации	
		не используется	
Гистерезис преобразователя сигналов	HYS.P	в данной модификации	
		не используется	
Кол-во исполнительных механизмов	nPC	в данной модификации	1
		не используется	
Папка параметров исполнительного	F.PC		
механизма			

Порог (нижний) преобразования сигналов	PCP	в данной модификации	
		не используется	
Тип исполнительного механизма	SE.P	2.pos	3.pos
			3.pos
Зона нечувствительности для задвижек	db.F	0.0510 [%]	
в процентах			
Наличие датчика положения	dlp	No/Yes	
Тип входа определения положения задвижки	t.DP	в данной модификации	
		не используется	
Номер входа определения положения задвижки	i.DP	в данной модификации	6
		не используется	
Минимальное время остановки задвижки	t.StP	0:0116:39 [мин]	
Минимальное время работы задвижки	tP.L	0.110 [сек]	
Полное время хода задвижки	tP.H	0:1166:9 [мин]	
Время выборки люфта задвижки	tFP	0.110 [сек]	
Исходное положение ИМ	LSP	0100 [%]	
1-ый ВЭ управляющий ИМ	oP 1	2,3,5,6	2
2-ой ВЭ управляющий ИМ	oP 2	2,3,5,6	3
(для 3-х позиционного ИМ)			
Папка параметров 1-го ВЭ	oU.E 1		
управляющего ИМ			
Папка параметров 2-го ВЭ	oU.E 2		
управляющего ИМ			
(для 3-х позиционного ИМ)			


//Настройка/Параметры/ ВХОДНЫЕ УСТРОЙСТВА/F.PC/oU.E

Тип ВЭ	PoU	в данной модификации не используется	
Период следования импульсов при ШИМ-регулировании	tHP	0.011.21	0.02
Минимальная длительность импульсов при ШИМ-регулировании	t.L	0.0500.5	0.05

Настройка

реле 2 реле 3 реле 4 ЦДП ЦДП

Клеммы 1-2 предназначены для подключения прибора к сети 220 В.

Клеммы 4-5-6 предназначены для подключения цепи управляющей жалюзи и приточным вентилятором;

Клеммы 7-8 и 9-10 – для управления двухпозиционным КЗР;

управление

Клеммы 11-12 – для подключения устройства сигнализации;

Клеммы 17-26, 51-52 – для подключения контактных датчиков;

Клеммы 28-29 – для подключения кабеля связи по интерфейсу RS-485;

Клеммы 31-48 – универсальные входы для подключения измерительных датчиков.

Клеммы 53, 54, 55 для подключения кабеля связи по интерфейсу RS-232.

Клеммы 56, 57, 57, 59 – предназначены для подключения модуля расширения ОВЕН МР1.

ПОДКЛЮЧЕНИЕ ТЕРМОПРЕОБРАЗОВАТЕЛЕЙ СОПРОТИВЛЕНИЯ ПО ДВУХПРОВОДНОЙ СХЕМЕ

Г.1. Как указывалось ранее, применяемые в качестве датчиков термопреобразователи сопротивления должны соединяться с входами ТРМ133 по трехпроводной схеме, использование которых нейтрализует влияние сопротивления соединительных проводов на результаты измерения. Однако в технически обоснованных случаях (например, когда установка прибора производится на объектах, оборудованных ранее проложенными монтажными трассами) такое соединение может быть выполнено и по двухпроводной схеме. Такое соединение

При использовании двухпроводной схемы следует помнить, что показания прибора в некоторой степени будут зависеть от изменения температуры

рекомендуется применять для высокоомных

датчиков (500, 1000 Ом).

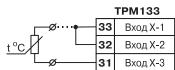


Рис. Г.1

среды, окружающей линию связи «датчик-прибор». Пример подключения термопреобразователя сопротивления к контактам «Вход1» приведен на рис. Г.1.

При использовании двухпроводной схемы перед началом эксплуатации прибора необходимо выполнить действия, указанные в п. Г.2...Г.8.

- Г.2. Произвести подключение датчика по двухпроводной схеме к соответствующему входу прибора, аналогично тому, как это указано на рис. Г.1.
- Г.З. Подключить к линии связи «датчик-прибор» (к противоположным от прибора концам линии) вместо термопреобразователя магазин сопротивления типа Р4831 (или подобный ему с классом точности не хуже 0,05).
- Г.4. Установить на магазине значение, равное сопротивлению термопреобразователя при температуре 0 °С (50,000 или 100,000 Ом в зависимости от типа применяемого датчика).
- Г.5. Подать питание на прибор и на соответствующем канале по показаниям индикатора зафиксировать величину отклонения температуры от значения 0,0 °С. Полученное отклонение всегда должно иметь положительное значение, а величина его будет зависеть от сопротивления линии связи «датчик-прибор».
- Г.6. Установить для данного датчика в параметре in. SH «Сдвиг характеристики» коэффициент коррекции равный значению, зафиксированному при выполнении работ по п. Г.5 (отклонение показаний индикатора от 0,0 °C), но взятому с противоположным знаком, т.е. со знаком минус.

Пример. После подключения ко входу канала термопреобразователя сопротивления по двухпроводной схеме и выполнения работ по п. В.5 на индикаторе зафиксированы показания 12,6 °C. Для компенсации сопротивления линии связи в программируемом параметре **in. SH** датчика канала следует установить значение – **012.6**.

СЕТЬ

Г.7. Проверить правильность задания коррекции, для чего, не изменяя сопротивления на магазине, перевести прибор в режим РАБОТА и убедиться, что показания на соответствующем канале индикатора равны 0 $^{\circ}$ C (с абсолютной погрешностью не хуже 0,2 $^{\circ}$ C).

При необходимости эти операции следует выполнить для остальных каналов измерения.

Приложение Д

ЮСТИРОВКА ДАТЧИКА ПОЛОЖЕНИЯ ЗАДВИЖКИ

- 1. Для канала с подключенным датчиком положения (Дпз) в программируемом параметре in-t устанавливается код, соответствующий подсоединенному Дпз (например, P.r0.9, см. прил. Ж).
 - 2. Установить задвижку в крайнее закрытое положение.
- 3. Выбрать пункт Главное меню / Настройка / Юстировка / Задвижки , Пароль.
- 4. Ввести пароль «**118**» и нажать кнопку вол на передней панели прибора. Убедиться в появлении на цифровом индикаторе заставки **«CLbr typ 4**».
- 5. Нажать кнопку и убедиться в появлении на индикаторе заставки «**CHn 1**» (выбор юстируемого канала).
- 6. Выбрать канал юстировки (канал, к которому подключен Дпз, в конфигурации 01 равен 6).
- 7. Нажать кнопку и убедиться в появлении на индикаторе заставки «**0**» (готовность прибора к юстировке крайнего закрытого положения задвижки).
- 8. Нажать кнопку и наблюдать последовательное появление на индикаторе четырех прочерков. По окончании юстировки на индикаторе отображается заставка Cl.nr и вычисленное прибором значение юстировочного коэффициента.
 - 9. Для записи юстировочного коэффициента в память прибора нажать кнопку
- вод . После записи прибор переходит в текущий режим.
 - 10. Установить задвижку в крайнее открытое положение.
 - 11. Повторить действия по п.3...7.
- 12. Кратковременно нажать кнопку и убедиться в появлении на цифровом индикаторе заставки «99» (готовность прибора к юстировке крайнего открытого положения задвижки).
 - 13. Повторить действия по п.8, 9.
- 14. Юстировка Дпз для выбранного канала завершена. Показания прибора в канале измерения положения задвижки должны быть равны **100,0**.

Приложение Е ПИД-РЕГУЛЯТОР И ПАРАМЕТРЫ ЕГО НАСТРОЙКИ

Е.1. Общие принципы ПИД-регулирования.

Параметры ПИД-регулятора

Е.1.1. ПИД-регулятор и его коэффициенты

ПИД-регулятор (пропорционально-интегрально-дифференциальный регулятор) выдает аналоговое значение выходного сигнала, направленное на уменьшение отклонения текущего значения контролируемой величины от Уставки.

Выходной сигнал ПИД-регулятора Үі рассчитывается по формуле:

$$Y_i = \frac{1}{X_p} \cdot \left[E_i + \tau_{_{\rm I\!I}} \cdot \frac{\Delta E_i}{\Delta t_{_{\rm H3M}}} + \frac{1}{\tau_{_{\rm I\!I}}} \sum_{i=0}^n E_i \, \Delta t_{_{\rm H3M}} \right] \quad , \label{eq:Yi}$$

где Х – полоса пропорциональности;

E_i – разность между Уставкой и текущим значением *T*_i

контролируемой величины, или рассогласование;

τ_д – дифференциальная постоянная;

 ΔE_i – разность между двумя соседними измерениями E_i и E_{i-1} ;

 $\Delta t_{_{_{\mathrm{ИЗM}}}}$ – время между двумя соседними измерениями $T_{_{\mathrm{i}}}$ и $T_{_{\mathrm{i}}-_{_{1}}}$;

- накопленная в і-й момент времени сумма рассогласований

 $\sum_{i=0}^{n} E_i$ (интегральная сумма).

Как видно из формулы, сигнал управления является суммой трех составляющих:

- пропорциональной (1-е слагаемое);
- интегральной (3-е слагаемое);
- дифференциальной (2-е слагаемое).

Пропорциональная составляющая зависит от рассогласования Ei и отвечает за реакцию на мгновенную ошибку регулирования.

Интегральная составляющая содержит в себе накопленную ошибку $\sum_{i=0}^{n} E_i \Delta t_{\text{изм}}$ регулирования и позволяет добиться максимальной скорости достижения уставки.

Дифференциальная составляющая зависит от скорости изменения рассогласования $\Delta Ei/\Delta t_{_{_{\mathit{изм}}}}$ и позволяет улучшить качество переходного процесса.

Для эффективной работы ПИД-регулятора необходимо подобрать для конкретного объекта регулирования значения коэффициентов ПИД-регулятора \mathbf{X}_{ρ} , \mathbf{t}_{μ} и \mathbf{t}_{μ} (соответственно, параметры \mathbf{Pb} , \mathbf{ti} и \mathbf{td} . \mathbf{ti} , последний задается как отношение \mathbf{t}_{μ} / \mathbf{t}_{μ}).

Настройку ПИД-регулятора рекомендуется выполнять в автоматическом режиме (см. п. 5.2.4.). При настройке вручную можно определить приблизительные значения параметров ПИД-регулятора по *прил*. E.2.

Е.1.2. Номинальная выходная мощность. Ограничение накопления интегральной составляющей

Рассмотрим поведение объекта при классическом ПИД-регулировании (см. рис. Е.1, черная кривая).

Как видно, при длительном выходе на уставку ПИД-регулятор производит «перерегулирование» объекта. «Перерегулирование» связано с тем, что в процессе выхода на уставку накопилось очень большое значение интегральной составляющей в выходном сигнале регулятора (мощности).

После «перерегулирования» начинается уменьшение значения интегральной составляющей, что, в свою очередь, приводит к провалу ниже уставки –

«недорегулированию». Только после одногодвух таких колебаний ПИД-регулятор выходит на требуемое значение мощности.

Во избежание «перерегулирования» и «недорегулирования» необходимо ограничить сверху и снизу значение накопленной интегральной составляющей.

Пример. Имеется печь, для которой из опыта известно, что для поддержания определенной уставкитребуется мощность от 50% до 70%. Разброс мощности в 20% вызван изменениями внешних условий, напримертемпературы наружного воздуха. Тогда, вводя ограничение интегральной составляющей, т. е. задав параметры i.min = 50% и i. UPr = 70%, мы можем уменьшить «перерегулирование» и «недорегулирование» в системе (см. рис. Е.1, синяя кривая).

ВАЖНО! Следует понимать, что ограничения параметров i.min и i.UPr распространяются только на интегральную составляющую. Конечное значение выходной мощности, полученное как сумма пропорциональной, дифференциальной и интегральной составляющих, может лежать вне пределов, заданных i.min и i.UPr. Ограничение конечного значения выходной мощности в системе задается параметрами P.min и P.UPr (см. п. 3.7.3).

Для уменьшения колебаний при переходных процессах можно также задать номинальную мощность. Номинальная мощность – это средняя мощность, которую надо подать в объект регулирования для

Рис. Е.1

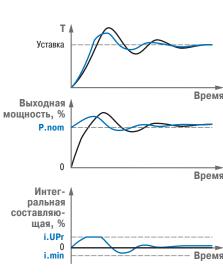


Рис. Е.2

достижения требуемой уставки. В нашем примере номинальную мощность \mathbf{P} . \mathbf{nom} нужно задать равной 60 %. Тогда при работе к значению выходной мощности, рассчитанной ПИД-регулятором, будет прибавляться номинальная мощность. При задании номинальной мощности параметры ограничения интеграла необходимо задать от значения \mathbf{P} . \mathbf{nom} . В нашем примере для достижения значения интегральной составляющей от 50% до 70% и при \mathbf{P} . $\mathbf{nom} = 60\%$ необходимо задать \mathbf{i} . $\mathbf{min} = -10\%$, \mathbf{a} \mathbf{i} . $\mathbf{UPr} = +10\%$.

Работа системы с заданной номинальной мощностью и ограничениями интегральной составляющей показана на рис. Е. 2. Как видно из рисунка, переходный процесс протекает несколько быстрее, т .к. значение выходной мощности сразу начинает расти от Р. nom, а не от нулевого значения.

Также задание э.nom необходимо при использовании ПД-регулятора.

Е.2. Определение параметров предварительной настройки регулятора

Приведенный ниже метод позволяет определить приблизительные параметры настройки регулятора для обеспечения возможности последующего применения Точной автонастройки. Это бывает необходимо в случае, если проведение предварительной настройки в автоматическом режиме недопустимо.

Грубая оценка параметров регулятора основана на временных характеристиках переходной функции объекта регулирования. Для снятия переходной функции объект выводят в рабочую область в ручном режиме, дожидаются стабилизации регулируемой величины и вносят возмущение изменением управляющего воздействия на *DP*, [% от диапазона изменения управляющего воздействия]. Строятграфик переходной функции (см. рис. Е.З). Используя график, вычислить:

$$t_{o6} = t_1 - t; v_{ob} = (T_2 - T_1)/(t_{o6} \cdot DP); \tau_i = 4 \cdot t; X_o = 2 \cdot t \cdot v_{ob},$$

где $X_{_{D}}$ – полоса пропорциональности, [ед. изм./%];

au – постоянная запаздывания, [c]

 t_{of} – постоянная времени объекта, [c];

V_{ob} – максимальная скорость изменения регурируемой величины при изменении задания на один процент, [ед.изм.]

Рис. Д. 3. График переходной функции

_ – интегральная постоянная, [с];

 T_2 – установившееся значение регулируемой величины, [ед. изм.];

 $T_{_{1}}$ – начальное значение, [ед. изм.];

 ΔP – изменение управляющего воздействия, [%].

Коэффициент $t_{\rm g}/t_{\rm u}$ (параметр td.ti), определяющий долю дифференциальной составляющей, выбирается из интервала [0,1...0,25].

Конкретное значение $t_{\rm m}/t_{\rm m}$ задается с учетом реальных условий эксплуатации и характеристикиспользуемых технических средств. Длятого, чтобы определить оптимальное значение $t_{\rm m}/t_{\rm m}$, необходимо сопоставить работу системы в реальных условиях эксплуатации при двух-трех различных значениях $t_{\rm m}/t_{\rm m}$ (например, при $t_{\rm m}/t_{\rm m}=0.1$; 0,15 и 0,25).

По умолчанию введено значение $t_{\rm g}/t_{\rm u}=0,15$.

Приложение Ж

Список подключаемых датчиков (параметр in-t)

0	Т П		•	
Отобр. на	ТипДатчика	Типдатчика*	W ₁₀₀	
индикаторе	(CHF)	(Международное)		
OFF	Датчикотключен			
	– ТЕРМОПРЕОБРАЗОВАТЕЛИ	СОПРОТИВЛЕНИЯ -		
r426	TCM 50M	Cu 50	1,42602	
r428	TCM 50M	Cu' 50	1,428010	
r385	ТСП 50П	Pt 50	1,38508	
r391	ТСП 50П	Pt' 50	1,39109	
r.426	TCM 100M	Cu 100	1,42601	
r.428	TCM 100M	Cu' 100	1,428015	
r.385	ТСП 100П	Pt 100	1,3850	
r.391	ТСП 100П	Pt' 100	1,3910	
r.617	TCH 100H	Ni 100	1,6170	
t385	ТСП 500П	Pt 500	1,3850	
t391	ТСП 500П	Pt' 500	1,3910	
t385	ТСП 1000П	Pt 1000	1,3850	
t391	ТСП 1000П	Pt' 1000	1,3910	
t.617	TCH 1000H	Ni 1000	1,6170	
– ТЕРМОПАРЫ –				
EL	TXK	L		
EK	TXA	K		
– АКТИВНЫЕ ДАТЧИКИ –				
i4.20	Датчик 420 мА			
i0.20	Датчик 020 мА			
i0.5	Датчик 05 мА			
U0_1	Датчик 01 В			
	– ДАТЧИКИ ПОЛО	ЖЕНИЯ –		
P.r0.9	Резистивный датчик			
	задвижки до 900 Ом			
P0.20	Датчик положения		<u> </u>	
	задвижки с токовым			
	выходом 020 мА			
P0.5	Датчик положения			
	задвижки с токовым			
	выходом 05 мА			
P.r2.0	Резистивный датчик			
	задвижки до 2 кОм			
* 112 001100011141	LA FOCT 6651 04 «TopMorpoofpaaopatoru	Connormania (ouonos II	C60751)	

^{*} на основании ГОСТ 6651-94 «Термопреобразователи Сопротивления» (аналог IEC 60751) ГОСТ 8.585-2001 «Термопары» (аналог IEC 60584-1)

Примечание: В данной редакции РЭ и программы-конфигуратора приведены датчики, используемые в системах вентиляции и кондиционирования. За подробной консультацией обращайтесь в группу технической поддержки.

Приложение 3

НАСТРОЙКА ПРИБОРА ДЛЯ РАБОТЫ С ИМ С АНАЛОГОВЫМ УПРАВЛЕНИЕМ

Прибор ТРМ133 может работать в состове системы с регулирующим клапаном с аналогвым управлением

1)Для изменения типа ИМ переведите систему в режим ожидания задайте параметру idle значение ON).

2)Отключите ВУ от регулятора, задайте параметру ОР 1 и ОР 2 (если есть) (// Настройка/Параметры/ ВЫХОДНЫЕ УСТРОЙСТВА/F.PC) значения оFF.

3)Задайте параметру SE.Р (//Найстройка/Параметры/ ВЫХОДНЫЕ УСТРОЙСТВА/F.PC) значение 2.PoS.

4)Подключите регулятор к аналоговому ВУ №5, задав параметру ОР 1 значение 5.

5) Переведите прибор в рабочий режим (idle=oFF)

НАСТРОЙКА ПРИБОРА ДЛЯ РАБОТЫ С 3-Х ПОЗИЦИОННЫМ ИМ

Прибор ТРМ133 может работать в составе системы с 3-х позиционным

1)Для изменения типа ИМ переведите систему в режим ожидания задайте параметру idle значение ON).

2)Отключите ВУ от регулятора, задайте параметру ОР 1 и ОР 2 (если есть) (// Настройка/Параметры/ ВЫХОДНЫЕ УСТРОЙСТВА/F.PC) значения off.

3)Задайте параметру SE.P(//Настройка/Параметры/ ВЫХОДНЫЕ УСТРОЙСТВА/ F.PC) значение 3.PoS.

4)Подключите регулятор к дискретным ВУ №2 и №3, задав параметру ОР 1 значение 2. и ОР 2 значение 3.

5) Если ИМ оснащен датчиком положения выполните следующие действия:

- Подключите датчик положения к Входу № 6;
- Задайте параметру n.Ch (//Настройка/Параметры/Объекты/obJ 1) значение 6;
- Настройте Вход № 6 для работы с вашим датчиком;
- Задайте параметру dlp значение ON;

6)Если ИМ НЕ оснащен датчиком положения выполните следующие действия:

- Задайте параметром tp.н полное время хода задвижки;
- Задайте параметром tp.L минимальное время работы задвижки;
- Задайте параметром tfp время выборки люфта задвижки;
- 7) Переведите прибор в рабочий режим (idle=oFF)

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ измене- ния	Номера листов (стр.)		Всего листов	Дата	Подпись		
	измен.	заменен.	НОВЫХ	аннулир.	(стр.)	внесения	
		-					

СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

приоор тРМ 133, заводской	номер
Соответствует паспортным ,	данным и признан годным к эксплуатации.
Дата выпуска	
Штамп ОТК	Дата продажи